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ABSTRACT

An overview of the state-of-the-art in techniques for seismic rehabilitation of existing buildings was presented
in this paper with emphasis on research and practice. First typical techniques used for reinforced concrete, steel
and masonry buildings were summarized in accordance with the aims of rehabilitation. New approaches to
utilize seismic isolation and supplemental damping as well as conventional strengthening techniques to infill,
to brace and to jacket existing structure were described. Over twenty years research data were reviewed to
discuss the improved behavior of rehabilitated structures and components with various techniques. Examples
of both postearthquake and preearthquake rehabilitations of existing buildings were described in some detail.
Finally the observed behavior of several rehabilitated buildings during particular earthquakes were introduced
to discuss the effect of rehabilitation.
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INTRODUCTION

In earthquake engineering, the term "rehabilitation" is used as a comprehensive term to include all the concepts
of "repair", "upgrading", "retrofitting" and "strengthening" that lead to reduce building earthquake vulnerabil-
ity. In early years of the world conference on earthquake engineering (WCEE), the major topic in the technical
session of rehabilitation was the development of techniques to repair and to strengthen existing structures.
After experiences of significant damage to buildings due to several destructive earthquakes, particularly, those
which hit highly densed urban areas (for examples, 1978 Miyagiken-oki, 1985 Mexico and 1989 Loma Prieta
earthquakes), many cases of practice of rehabilitation as well as development of rehabilitation techniques were
reported in the proceedings of WCEE. Thus, the number of papers on seismic rehabilitation has been increas-
ing in the WCEE with the increase of total number of technical papers (Fig. 1), and the ratio of the number of
rehabilitation papers to the total has been also increasing, reaching at over 4% in the latest conference of
10WCEE in 1992. This indicates that the importance of seismic rehabilitation of existing buildings has been
recognized year after year in our society. The recent two earthquakes, i.e., the 1994 Northridge earthquake and
the 1995 Kobe earthquake could have strongly pushed our society to recognize the importance of earthquake
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Fig. 1 Number of papers on seismic rehabilitation of existing buildings in the proceedings of WCEE

countermeasures for existing vulnerable buildings.

A large number of existing buildings in earthquake prone areas over the world need seismic rehabilitation due
to various reasons and motivations, such as code change or earthquake damage. Earthquake damaged buildings
may need strengthening along with repair of damaged portion for reuse (postearthquake rehabilitation). Gener-
ally, they are rehabilitated so that their improved seismic performance may satisfy the required performance by
current code. Seismically inadequate buildings, the design of which do not comply with current code, may also
need rehabilitation (preearthquake rehabilitation) so that they meet the requirements of the code in force. Many
rehabilitation techniques were investigated recent twenty or more years to apply to both preearthquake and
postearthquake rehabilitations. They are techniques to infill, to brace and to back up existing frames and to
jacket existing framing members so that lateral resistance and ductility of a building may be increased. In
addition to these conventional seismic resistant type techniques, another approaches to reduce seismic re-
sponse of a building have been recently adopted. Seismic isolation and supplemental damping are such new
techniques for rehabilitation, though they have been investigated for long time to use for new buildings.

This paper describes the present state of research and practice of techniques for seismic rehabilitation of exist-
ing buildings. First typical techniques which have been used for reinforced concrete, steel and masonry build-

ings are summarized in accordance with the aims of rehabilitation. Because of the large volume of existing data
available, most of the techniques described herein are those for reinforced concrete buildings. Examples of

techniques used for both postearthquake and preearthquake rehabilitations are described in some details. Re-
cent approaches to utilize seismic isolation and supplemental damping as well as conventional infilling, brac-
ing and jacketing techniques are described. Over twenty years research data have been reviewed to discuss the
improved seismic behavior of rehabilitated buildings and components with various techniques. Finally the
observed behavior of some rehabilitated buildings during particular earthquakes are introduced to discuss the
effect of rehabilitation.

REHABILITATION STRATEGY AND TECHNIQUES

Rehabilitation Strategy

As shown in Fig. 2, the aims of seismic rehabilitation are;

1) to recover original structural performance,
2) to upgrade original structural performance, and
3) to reduce seismic response

so as to reduce building earthquake vulnerability. To recover original structural performance, damaged or
deteriorated portions of a building may be repaired with adequate material or replaced with new element or
material. Toupgrade original structural performance there are several approaches (Fig. 2). General approach to
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Fig. 2 Seismic rehabilitation strategy and measures

upgrade original performance is to strengthen existing structure by the methods described in the following
section. To reduce excessive response displacement, a building must be stiffened. Irregularity or discontinuity
of stiffness or strength distribution which may result in failure or large distortion at particular portion of a
building must be eliminated by changing structural configuration. It is effective to supplement energy dissipat-
ing devices in the structure to enhance the capability to dissipate seismic energy and as a result to reduce
seismic response. Another concept to reduce seismic response is to isolate existing structure from the ground
(seismic isolation) as well as to reduce building masses. For important buildings which must be functioned
after an earthquake or which must preserve expensive and valuable contents, for example, it is particularly
effective approach.

Strengthening Techniques

Many approches and techniques have been studied and practiced for recent twenty or more years to strengthen
existing structures. Some of them include to stiffen existing structure and/or to improve irregularity or
discontinuity in distributin of stiffnes or srength of a building. The aims of seismic strengthening are to provide
1) increased strength, 2) increased ductility, and 3) a proper combination of these two features, so as to satisfy

the required seismic performance (Fig. 3). The required performance is evaluated in terms of strength and/or
ductility. The combination of strength and ductility involves the proper balance between strength and stiffness.

Providing increased strength is the most promising approach for low- to medium-rise buildings. Even if
sufficient ductility is provided, adequate strength is required to reduce inelastic displacement. Spandrel walls
may be separated from a column to eliminate "captive column" to increase ductility.

seismic
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Typical strengthening techniques are summarized in Figs. 3 through Fig. 9. Generally, new elements are added
to existing frames to provide increased strength (Fig. 4(a)), or existing framing elements are reinforced with
new materials to increase flexural capacity (Fig. 5(a)) and/or to improve ductility (Fig. 5(b)). Infill walls and
side walls are cast-in-situ or precast wall elements to be attached to frames or to beams. Generally, walls are of
cast-in-situ concrete infilling existing bare frame. Steel panel may also be a element to infill existing frame. It
is necessary to provide connections along with all the periphery when as much strength as that of monolithic

wall is required. Spandrel walls inside
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infilled with concrete. An existing structural wall may be strengthened by placing new concrete wall panel
along with the existing wall.

Typical details of connections to existing concrete are given in Fig. 4(b). Dowel connections in Fig. 4a) are
used for infill walls and side walls. The expansion and adhesive type anchors for dowel connection are
illustrated in Fig.4d). Steel elements may be simply attached to the existing concrete through mortar fill, as
shown in Fig. 4c), while they may be directly attached to the frames by bolting (Fig. 4b). Steel systems of
braces and panels with peripheral frame were studied by Yamamoto (1983, Fig.11) and Aoki (1992) using the
connection in Fig. 4c). The steel elements were welded or bolted to the peripheral frame, and the steel frame
was attached to existing frame through mortar fill. Stud bolts were welded to steel frame and adhesive anchors
were installed along the existing frame. These bolts and anchors acted as dowels through mortar fill, though
they were not connected each other. This connection tolerates more error in dimension of the steel system to be
attached to existing frame than the direct connection.

Flexural capacity of frames may be increased with concrete or steel jacket shown in Fig. 4(a) providing with
new longitudinal and lateral reinforcements. It is important to adequately arrange lateral reinforcements to
achieve ductile behavior. Beam-to-column connection may need confinement with steel element, though the
construction is not easy (Alcocer 1995, Hakuto, Park 1995). Column ductility may be improved with jacketing
techniques shown in Fig. 5(b). An existing column is jacketed with concrete or steel encasement. In increasing
ductility of columns with these techniques, the aim is to increase their shear capacity providing new concrete
and/or reinforcement. It is very important to provide a narrow gap at the end of steel or concrete encasement to
avoid undesired increase of shear forces resulting from the increase of flexural capacity.

Based on the lessons learned from the damage to steel connections by the 1994 Northridge earthquake, some
modification methods for steel connection are proposed (FEMA 1995). The aim of the methods shown in Fig.
6 as examples is to shift the plastic hinge away from the connection using haunch, cover plate or rib. These

v e
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% configuration
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alteil;natet. o
| 1 | configuration |
(a) Top and bottom haunch  (b) Cover plate connection (¢) Upstanding rib connection,
modification modification modification 1
Fig. 6 Examples of post-earthquake modification of steel connection (FEMA 1995)
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Fig. 7 Strengthening of masonry infill wall
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methods can be applied to new construction. Existing masonry infill walls may be strengthened by the addition
of new reinforced concrete column (Hidalgo 1995, Fig. 7(a)), by jacketing with concrete and welded wire
fabrics (Alcocer 1994, Fig. 7(b)) or by confining with steel section (Fig. 7(c)).

Recently seismic isolation has been adopted for rehabilitation of critical or essential facilities, buildings with
expensive and valuable contents, and structures where superior seismic performance is required. The seismic

(a) High-damping rubber (b) Lead core rubber ' (c) Friction pendulum system
Fig. 8 Isolation bearings used for seismic rehabilitation
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Fig. 9 Dampers used for seismic rehabilitation

isolation system significantly reduces the seismic impact on building structure and assemblies. For isolation
bearings elastomeric systems(high-damping rubber and lead core rubber) or friction pendulum system are
presently available (Fig. 8). In other cases, rubber bearings accompany damping element such as viscous
damper. Energy dissipation devices have been also adopted recently to reduce inelastic deformation demand.
Many ideas are proposed for new buildings, however, shear yielding damper (Okada, Seki 1992), viscoelastic
damper (Scholl 1986, Soong 1993) and added damping and stiffness (ADAS) elements (Scholl 1990, Kelly
1993) are presently available for seismic rehabilitation.

BEHAVIOR OF REHABILITATED STRUCTURES

Research on Rehabilitated Structures

The earliest tests in rehabilitation research were aiming at repair of damaged structure (Plecnic 1977, Gulkan
1977) and the improvement of column ductility by jacketing with steel encasement, steel straps or welded wire
fabrics (Sasaki 1975, Higashi and Kokusho 1975, Kahn 1980). They were also aiming at the boosting of the
strength of frames by the addition of precast or cast-in-situ walls (Higashi and Kokusho 1975, Kahn 1977,
Higashi and Ohkubo 1977). In addition, one-story infilled frames with various connection details and bracing
systems were examined (Higashi 1980, Sugano and Fujimura 1980). Three-story frames, strengthened by
infilling and bracing techniques, were also tested (Higashi 1984). Further tests were those for infill walls
(Aoyama 1984, Ramirez 1992), steel bracing systems (Yamamoto 1983, Katsumata 1989, Goel 1992, Aoki
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1992) and jacketed columns with steel straps (Arakawa 1980), with carbon fiber (Takeda and Katsumata 1988,
1992), with steel encasement (Yoshimura 1992, Aboutaha 1994) and with concrete (Park, Rodoriguez 1992).
Beam-column joints of jacketed frames were also tested by Alcocer 1992, and Park and Hakuto 1995.

Shear transfer at the connection between new ans existing elements was another issue in strengthening. The
behaviors of fasteners and connections were investigated by Eligehausem 1988, Jirsa 1988, Shimizu 1988,

Akiyama 1992, Hosokawa 1992 and Valluvam 1994.

Behavior of Strengthened Frames

Examples of the behavior of strengthened frames with various construction techniques are shown in Fig. 10
(Sugano and Fujimura 1980). Infill wall behaved similarly to monolithic wall, though the strength was slightly
less. Concrete blocks also extensively increased the strength of original frame. Tension braces provided good
ductility properties while compression braces and steel panel did not develop their yield strength due to the
failure of existing columns or connections. The behavior of strengthened frames with steel systems are
summarized in Fig. 11 (Yamamoto 1983). Both the X and V braces and a panel with opening were capable of
significantly improving not only strength but also ductility of original frame. The double K braces (Aoki 1992)
also indicated significantly improved both strength and ductility of original frame. Note that even a steel
peripheral frame alone could significantly improve both the strength and ductility. Another recent test of V-
braces system with hinge device at the joint to the steel frame (Okada, Seki 1992) indicated significantly
increased energy dissipating capability resulting from yielding of shear panel.

Typical load-displacement relationships of strengthened frames with various construction techniques are
illustrated in Fig. 12. This is only qualitative indication of the order of strength and ductility that might be
attained using different techniques. The findings from the figure were summarized as follows. 1) When
adequate connections were provided, infill walls exhibited almost the same strength as monolithic wall. 2)
Multiple precast panels provided good ductility properties, however as expected, much less strength was
attained. 3) The predominance of bending behavior in three story frame was observed in contrast to shear

dominance in one-story frames. 4) Steel framed braces indicated significantly increased both strength and
ductility. 5) Concrete blocks and brick masonry also significantly increased strength.

Behavior of Reinforced Members

Fig. 13(a) shows the dramatic improvement of ductility attained by a column using welded wire fabric
wrapping and mortar (Kokusho 1975). Thick lines in the figure show the brittle failure of this type of short
column that has been observed in many damaged buildings due to destructive earthquakes. Displacement
ductility larger that 6 could be attained in this case. Also the significant improvement of ductility by steel
encasement is shown in Fig. 13(b) for the test by Yoshimura 1992. While original columns with average and
heavy reinforcement failed in shear, jacketed columns could sustain the displacement larger than 2%.

Typical load-displacement relations of reinforced columns with various techniques are shown in Fig. 14. This
is also qualitative indication of the order of strength and ductility that might be attained using different
techniques. The findings are summarized as follows. 1) Anyone of wrapping techniques to use steel
encasement, concrete encasement, carbon fiber and steel straps resulted in considerable increase in ductility,
2) Columns with concrete jacket indicated significantly increased both strength and ductility. 3) Steel
encasement without end gaps resulted in decrease of strength, though higher strength was obtained. 4)
Separation of spandrel walls considerably increased ductility while the strength was significantly reduced.
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SEISMIC REHABILITATION OF EXISTING BUILDINGS

Postearthquake Rehabilitation

Recent over 25 years, many buildings were rehabilitated after the damage by destructive earthquakes using
various types of techniques. The criteria how to restore a damaged building depends on the level of its damage
and the intensity of the earthquake which caused the damage (Table 1). Generally they were rehabilitated to
upgrade their seismic performance so that they may meet the requirement of code in force. The major aims of
the rehabilitation are to recover original function of the building and to prepare measures against possible
stronger earthquake. Used techniques were in wide variety. In early cases, mostly concrete shear walls were
selected because they were capable of providing large lateral resistance. The building in Photo 1 was severely
damaged by the earthquake of 1968 (Tokachi-oki earthquake) and it was rehabilitated one year after the
earthquake by placing concrete walls along with repair of damaged columns in shear. It was first experience
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Photo 1 Strengthemxiéﬁth shear walls
(after 1968 Tokachi-oki earthquake)

Photo 2 engthning with steel braces "
(after 1978 Miyagiken-oki earthquake)

-

?hoto 4 Conrete

Photo 3 Strengthening with buttresses jacketing

(after 1980 Livermore earthquake) (after 1985 Mexico earthquake)

Photo 5 Steel jacketing . Photo 6 Rehabilitation with seismic isolation
(after 1985 Mexico earthquake) (after 1989 Loma Prieta earthquake)

for Japanese engineers to extensively strengthen existing structure for future earthquake. The shear wall
strengthening, however, takes disadvantages due to 1) increased weight of the building, and 2) separation of
space. Diagonal steel bracing is another solution to provide large lateral resistance of a building, in addition,
possible large displacement capacity. In the building in Photo 2 which suffered severe damage due to shear
failure of short columns by the 1978 Miyagiken-oki earthquake, steel diagonal braces were placed along both
longitudinal exterior frames through the stories. The increased lateral resistance and the ductility were verified
by laboratory tests (Kawamata 1980). The steel bracing can provide large lateral resistance and large opening
for lighting without increased weight followed by the rehabilitation.

Buttresses were used for the building in Photo 3 damaged by the Livermore earthquake of 1980 (Freeland
1984). Sharpe 1990 reported another case of buttress strengthening for another building in the same site. The
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buttress does not disturb interior building space and function, therefore, it is effective method when outer space
is sufficiently provided. Photos 4 and 5 show jacketing of existing frame elements with concrete and steel
straps which were seen in Mexico City after the earthquake of 1985. Because of significantly increased design
seismic forces after the code revision, massive jacketing was necessary to meet the code requirements. The
building in Photo 6, consisting of wooden bearing walls, was affected by the Loma Priete earthquake of 1989
and seismic isolation was adopted for rehabilitation. Friction pendulum system was used for isolation bearing.

Restoration of Damaged Buildings in Kobe

A large number of reinforced concrete, steel reinforced concrete and steel buildings in Kobe City suffered
severe damage by the earthquake of 1995. Many damaged buildings needed repair for reuse while collapsed or
some of severely damaged buildings were demolished. The criteria for restoration depends on damage level
and the intensity of the earthquake which damaged the buildings. Table 1 shows a proposed criteria for
restoration (Japan Building Disaster Prevention Association 1991). In the areas which reported seismic
intensities VI (in JMA scale) or greater, restoration by only "repair" was underway in most of damaged
buildings. The restoration design and construction for damaged buildings were achieved following existing
guidelines. Figure 15 shows examples of recommended repair techniques for reinforced concrete and steel
buildings (Building Center of Japan 1995).

Table 1 Criteria for restoration of damaged buildings

Damage Level Light Minor Medium Major Collapse
Seismic lower than 5 O A X X X
Intensity 5 @ O A X X
Scale(JMA)  higherthan 5 O O O A X
restoration by : Orepair, Arepair or strengthening, Xstrengthening or demolition
JMA Scale 0 1 2 3 | 4 5 I 6 7 JMA.Japan Meteorological
MMScale | I | ol mjwl v] vilvin]lvin] x] x| x| xu Agency
Damage rank _Rank IJ or less — RankIV 7 Rank V ;
Sketch L] | L] | .
of —
damage
2 |
Repair  Repair cracks Grout mortar or cast concrete Jacket with concrete |
method  Repair cracks and Jacket with welded wire Jacket with steel plate and grout
partial loss of concrete  fabrics and morter mortar ‘
Repair partial loss of Jacket with steel plate and Jacket with steel plate, add vertical
concrete grout morter reinforcementand grout mortar |
(a) Repair of damaged concrete columns |
i
stiffening plate |
welding L_J | L -
after | l I =
. 4 o B——
gouging S 3
stiffening H H ~_stiffening %‘ ‘z,“
plate ‘ ‘ ‘ { plate ' ' —
. re-weldin,
Ruptured base metal Buckled H-section Cracked welding portion ~ after gouggmg

(b) Repair of damaged steel members |
Fig. 15 Examples of repair techniques after 1995 Kobe Earthquake (Building Center of Japan 1995) 7
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Preearthquake Rehabilitation

Since the publication of the "Standards for Seismic Capacity Evaluation of Existing Reinforced Concrete
Buildings" (Japan Building Disaster Prevention Association 1977) a large number of existing buildings have
been evaluated in Japan. Particularly, several agencies in charge of administration of a number of public build-
ings have performed the evaluation as a part of seismic countermeasure program. The cases of such evaluation
of the Shizuoka Prefecture, Yokohama City and the Tokyo metropolis are summarized in Table 2 (Hirosawa
1992). The Shizuoka Prefecture, where a magnitude 8 or more earthquake is presumed, has evaluated 1896
public buildings including schools, city offices hospitals, etc by the year of 1986. Sixty five or more percent
buildings were judged to be rebuilt or to need rehabilitation. 465 building were actually rehabilitated during the

Table 2 Examples of rehabilitation project of public buildings in Japan

Municipality SeismicEvaluation SeismicRetrofit

No of Bldgs Use Period No of Bldgs Period Construction Techniques
Shizuoka school, P ‘@n. infill walls, steel braces and
Prefecture 2078 city office, etc. 77~36 465 82~87 panels, column jacket
Yokohama 870 school, Qo.ogq  30~40% ‘87~  steel braces, column jacket
City city office, etc. of the total underway
Tokyo apartment 70, Q1. infill walls, side walls,
Metropolis 48 houses 7981 46 81~83 column jacket

reference : Hirosawa 1992, Usami et al 1988

Table 3 Seismically Isolated Buildings for Rehabilitation
Building(city,country,yr.completed)  Original Structural System Floors/size (nf) Isolation System

Salt Lake City and County Building Steel braced frame 5/16000 LRB
(Salt Lake City, Utah, USA 1989)

Rockwell Seal Beach Facility RC moment frame 8/28000 LRB
(Seal Beach, California, USA 1991)

Mackay School of Mines URM bearing wall 3/4700 HDR & PTFE
(Reno, Nevada, USA 1991) sliders

Marina Apartments Wood bearingwall / Steel 4/1900 FPS
(San Francisco, California, USA 1994) moment frame

ChanningHouse Retirement Home RC frame/RC shear wall 11/19600 LRB
(Palo Alto, California, USA 1994)

LongBeach Hospital RC shear wall 12/33000 LRB
(LongBeach, California, USA 1995)

Oakland City Hall Steel frame/ URM infill 18/14000 LRB
(Oakland, California, USA 1995)

U.S. Court of Appeals Steel frame / URM infill 5/33000 FPS
(San Francisco, California, USA 1995)

Kerckhoff Hall, UCLA (San Francisco, R(C frame/URM infill 6/9300 LRB
California, USA 1995)

San Francisco City Hall (SanFrancisco, Steel frame/ URM 5/56000 LRB
California, USA 1996)

Los Angeles City Hall (Los Angeles, Steel frame / RC shear wall 32/82000 HDR & PTFE
California, USA 1996) /URM infill sliders

Parliament House (Wellington, New- URM bearing wall 5/26500 LRB
Zealand, 1995)

Parliament Library (Wellington,New- ~ URM bearing wall 5/6500 LRB
Zealand, 1995)

Houtoku-Ninomiya Temple (Odawara, Wood frame 1/112 Rubber Bearing
Japan, 1997) + V.Damper

RC : Reinforced Concrete ~ URM : Unreinforced Masonry HDR : High Damping Rubber Bearings
LRB : Lead Rubber Bearings FPS : Friction Pendulum System  PTEE : Poly-Tetra-Fluoro-Ethylane
Reference: Mayes 1995, Soong 1992, Kelly 1992, Japan Society of Seismic Isolation 1996
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period of 1982 to 1987. The major construction technique was to use concrete infill walls so that they may
provide very high lateral desistance against the presumed huge earthquake. However, in later part of the
project, steel systems in Fig. 11 were also used to avoid the increased weight of building associated with the
strengthening and to provide large opening for lighting.

In the USA, also many buildings have been evaluated, particularly, since the Loma Prieta earthquake of 1989.
The rehabilitation project for UCLA campus buildings, for example, is reported (Ingham 1994). Both dam-
aged or undamaged buildings may be rehabilitated using conventional techniques (for example, Amin 1994).
New techniques such as seismic isolation and supplemental damping, however, are used recently (Hart 1994,
Mayes 1995, Soong 1992). Particularly, seismic isolation has been selected in more than ten buildings for
rehabilitation (Table 3). The motivating factors for selecting seismic isolation are (Soong 1992);

1) Historical building preservation,
2) Functionality,

3) Design economy

4) Investment protection, and

5) Content protection.

The adopted isolating bearings are 1) high damping rubber bearings, 2) lead rubber bearings and 3) friction
pendulum system. The techniques has been used mainly for historical buildings or important building since it
was first applied to the historical Salt Lake City and County Building (Table 3).

BEHAVIOR OF REHABILITATED BUILDING DURING EARTHQUAKE

Most of extensively rehabilitated buildings have not yet experienced strong ground motion. Only a couple of
cases of buildings which experienced strong ground motion after rehabilitation were reported. The followings

are the buildings in such cases.

A twelve-story reinforced concrete frame building in Mexico City was repaired and strengthened after suffer-
ing extensive damage during a moderate earthquake that shook the city in 1979 (Photo 7). The building suf-
fered no damage during the event of 1985 even though the shaking was much greater than that in 1979. The
results of forced vibration tests and analytical studies indicated that the steel braced frames that were attached
to the building for strengthening stiffened the structure, shifting its natural period away from the predominant
ground period of 2.0sec (Del Valle 1988). This is the case of successful rehabilitation and similar successful
case with steel bracing was reported by Hjelmstad 1988.

A three-story reinforced concrete building in Photo 8, which is structurally identical to the building in Photo 1,
suffered severe damage to first story columns due to the earthquake of 1968. The building was rehabilitated
with shear walls at the damaged first story only. Unstrengthened 2nd story columns suffered severe shear
cracks due to the recent earthquake of 1994. While adjacent building in Photo 1 which were rehabilitated up to
2nd story did not suffer any severe damage. Importance of balanced configuration of strengthening elements is
indicated in this case (Nakano 1995).

An old building in Photo 9 was constructed in 1918 in Kobe and ten month before the event of 1995, construc-
tion for seismic rehabilitation was completed. Existing brick walls were confined by new concrete frames and
existing concrete frames were reinforced with new steel frames arranged along with the existing frames. As a
result of the countermeasure, the building did not suffer any damage while some other historical buildings
suffer severe damage in the same area. This is very encouraging case to indicate the effectiveness of
preearthquake rehabilitation (Nikkei Architecture 1995).
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Photo 7 A rehabilitated building in Mexico Ci ——
o bef{great}iel eaf‘thqll;k:c‘)% 1285 =xaco LAy Photo 9 An old building in Kobe rehabilitated

d ten month before the earthquake of
Beidamase) 1995 (no damage)

Photo 8 A rehabilitated building with concrete
walls after 1968 Tokachi-oki earth-
quake. Unstrengthened 2nd story suf-
fered severe damage by the earth-
quake of 1994

CONCLUDING REMARKS

The present state of techniques for seismic rehabilitation of existing buildings has been overviewed based on
the survey of literatures and data of research and practice. The reaults of the review are summarized as follows.

1) Because of the experience of earthquake damage and the data availabe, most techniques described herein
are those for reinforced concrete buildings. Many typical techniques to strengthen existing structures have
been well investigated in terms of improved performance and they have been utilized. Although a few data
have been available regarding the rehabilitaion of steel structures, the recent two earthqauakes, the 1994
Northiridge earthquake and the 1995 Kobe earthquake would have strongly pushed the studies on
rehabilitation of steel structures, therefore, more data will be available in future. The concepts of
strengthening methods described here for brick infil walls to confine with concrete frame or with steel
elements, or to jacket with concrete and lateral reinforcement can be commonly used, though materials,
design and constrution may be different in each region.

2) In addition to conventional seismic resistant type rehabilitation techniques, another approach to isolate the
existing strucuture from the ground or to supplement energy dissipating devices to reduce seismic response
have been adopted. Seismic isolation can be applied to critical or essential facilities, buildings with
expensive and valuable contents, and structures where superior seismic performance is desired. Their
applications are only in smll numbers now, however, they will be widely used for seismic rehabilitation.

3) Rehsbiitation techniques may be selected in accorodance with required performance level. Generally the
seismic rehabilitation is achieved to upgrade the original performance to current code level. However, the
codes do not clearly figure out the postearthquake condition of designed building. Design approaches
corresponding to more detailed performance level will be neccessary.
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