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Abstract

In most optimization design methods, continuous optimization techniques have been often used. However, in
general, structural design parameters consist of discrete elements. And, optimization design by computers
makes it possible not only to improve the quality and efficiency of designs but also to discover novel design
process beyond human capabilities. Hence, an algorithm which is relevant to such problems is desirable.

This paper deals with a new stochastic combinational optimization algorithm which uses the importance
sampling procedure based on a Monte Carlo method. In this proposed procedure, discrete design parameters
are randomly sampled from region of solution space, and allowable region is updated and condensed from
the objective function of minimum weight and minimum displacements of nodes. An example of a 16 bar
truss structure under earthquake excitation is considered, and numerical analysis is carried out for an
optimum steel structural design where specified ready-made steel products are dealt with as elements of
structure.
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1.Introduction

In conventional optimization process of structural design under seismic loading, designers have to search for
optimal design values of element parameters so as to satisfy constraints strictly and quantitatively. Since
these design parameters such as cross sections of ready-made steel products are discrete, the objective
function of design process is also discrete. And, to solve a combinational optimization problem, means to
find the best or at least semi-optimal solution among a finite or countable numbers of alternative solutions.

In most optimization design problems, optimization techniques such as Newton method which deal with only
continuous variables have been often used. However, in general, structural design parameters consist of
discrete elements. And, optimization design by computers makes it possible not only to improve the quality
and efficiency of designs but also to discover novel design process beyond human capabilities. In addition,
these combinational optimization problems are always subject to danger of falling in local minima. Hence, an
algorithm which is relevant to such combinational optimization problems is desirable.

In order to circumvent these situations, a new combinational optimization procedure which uses an
importance sampling method based on a Monte Carlo method [Rubinstein (1981)] is proposed. This



procedure is to randomnize the cross sectional area of a member of truss structure, and then updating the
governing conditional probability density function, the expectation of the minimum weight and minimum
displacements of nodes, is obtained recursively [Sutoh et al (1995)]. In other words, proposed procedure
define state variables as probabilistic and turns out to be a Markovian approach such as an importance
sampling procedure in sense that the sampling region for location of optimal solution is recursively
condensed by the objective function of minimum weight and minimum displacements of nodes.

Regarding the importance sampling procedure, a series of research works by Bucher (1988) and Pradlwarter
et al (1994) must be mentioned. These studies are mainly concerned with evaluation of structural reliability
for complicated structures. Recently, a new artificial life approach which is named genetic algorithm has
been applied on combinational optimization problems. Genetic algorithm is an optimization procedure
representing simplified natural mechanism in which fitness function is used instead of objective function.
Basic functions of genetic algorithm are selection, crossover, reproduction and mutation. Since these
functions are of random nature except for reproduction, genetic algorithm may be called a probabilistic
search procedure. This principle was applied to engineering problems as genetic algorithm [Goldberg
(1989)]. An earliest model of genetic algorithm, however, was developed by Holland (1975) based on the
research on group automaton of Fogel et al (1967).

Finally, an example of a 16 bar truss structure under earthquake excitation is considered, and numerical
analysis is carried out for an optimum steel structural design where specified ready-made steel products are
dealt with as elements of structure. And it was found that procedure is a stable and robust determination of
design parameters, and can be easily applied even for optimum design problems under seismic loading, since
the procedure handles with the algorithm of an importance sampling procedure, in parallel with structural
analysis.

2. Formulation of Combinational Optimization

General combinational optimization problem can be formulated in the following way. Find a vector of
discrete design variables y €Q so as to minimize an objective function z(y) = [8(»), g2(»), g (P)].
z(y)—> min (1.a)
YED,DCQ (1.b)
where D is the allowable solution space, Q is the solution space, y is a vector of discrete variables and

8(y),i=1,---n are elements of system. In this combinational optimization problem, greater computer time
may be required to find the solution, otherwise the solution may fall into local minima.

2.1 Proposed Combinational Optimization Algorithm
The concept of the proposed combinational optimization algorithm has a strong analogy with the importance
sampling procedure based on a Monte Carlo method.
The methodology of the proposed algorithm is expressed as follows.

Step 1

For the first step, i sets of vectors are sampled in the allowable solution space D, and the objective
functions z(y) are calculated.

1) i sets of random sampling in the allowable solution space : D,
(Allowable solution space : D, Step (1) - i sets of sample vectors)
y(ll) ={J/llyy]2;”';y!n2}

: €))
y(‘l) = {.MI,M"“sy'nZ}

(Objective functions from i sets of sample vectors)

Z(vy) =[a (), gz(y‘m),- & Y)]
: 3)



Z(¥o) =18(V0), &(V ), 8( M)
where m, is number of discrete parameters.

2) Calculate the objective functions and update the next allowable solution space (D,) to be condensed from
the smaller objective function value compared with the mean value.

Step 2

Then, for the second step, #, sets of variable vectors are sampled in allowable solution space D, and the
objective functions z(y) are calculated, and so on.

3) i, sets of random sampling in allowable solution space : D,

(Allowable solution space : D, Step (2) - 4, sets of sample vectors)

y(lz) = {yll’y;a'“,y:nz}

: (4.2)
y(i;) ={)’1ﬂay§""’ :z
where the number of sample size is i > ;.
(Objective function from i/, set sample vectors)
Z(yzz)) =[g (y(lz)), & (y(lz) ) XIEA gn(y(lz) )]
: . (5.3)

Z(y(ﬂz)) =[g (y(i;) )& (.V(i;) ) XIS gn(y(i;) )]

Then, combinational optimization problems are always exposed to danger of falling in local minima. In order
to circumvent this situation, &, sets of variable vectors are sampled in the former solution space D, and the

objective functions are calculated.

(Reproduction from solution space: I Step (R,) -k, sets of sample vectors)

y(]Rl) = {yll’y;’ay:pa}

: (4.b)
y(klll) = {yl“:yl”d:"'3yt’;12
k:number of reproduction, k = a-j (o:reproduction rate)
Z()’(]m)) =[g (y(lm) )& (.V(lm) RN gn(y(lm) )]
: (5.b)

Z()’(kzlu)) =[g (y(kz]el) )& (y(klzl))a' &, ()’(k;lzl) )]
4) Similarly, calculate the objective functions and update the next allowable solution space (D,) to be
condensed from the smaller objective function value compared with the mean value.
Step j

5) i;, sets of random sampling in allowable solution space D,

(Allowable solution space :D; Step (j)- i, sets of sample vectors)

Vi =Y Yhat
: 6.2)
-l -

‘ 51
={yl s V2 ""aymz}
i>4 >--->1,,. number of sample size

i-1

Yii

(Objective function from i ;1 sets of sample vectors)

Z(¥i;) =18 (i) &)+ 8. (V)]
: (7.a)



ZOH) =18 1 85 ) 8. (VD]
(Reproduction from solution space : D, Step (R;,) - k,_, sets of sample vectors)

y(le-l) = {yl]hy;’.“!y:nZ}

: (6.b)
y(klji;ll) = {yﬁ-l’y;‘]-l,_”,yz{l}
k,..:number of reproduction, £, = a-i,, (a:reproduction rate)
Z(y(le—l)) = [gl(y(le-l)): gz(ygkj-l))"' ) gn(y(lw_x))]
: (7.b)

Z(yt) = 88 ) & &) 8, (V)]

In this way, discrete design parameters are randomly sampled from region of solution space, and with

allowable region is updated recursively to be condensed from the objective function and optimum solutions
of combinational problems is also obtained.

The flow chart of the proposed procedure is illustrated in Fig. 1.
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Fig. 1. Algorithm of proposed procedure

2.2 Markov Analysis

The proposed combinetional optimization procedure can be interpreted mathematically by using the theory
of discrete Markov chains. This procedure is a sequence of trials, where the probability of the outcome of
given sampling vectors depends only on the outcome of the previous sampling vectors.

The conditional probability of the kth outcome sample vectors y is expressed by following equation.
Sl Voo Vs Yloo) = f (Wl Yooy) 3

And similarly, the conditional probability of the kth allowable solution space D, is expressed by following
equation.

JSDID,D,,:+,D,.)= f(D|D,,) €)



In this procedure, kth sample vectors are stochastic variables dependent on the outcome of k-1th sampling
vectors, then the transition probability matrix P at the kth sample for each pair i, j of outcomes is expressed
by following equation.

n,=m, P (10)
-Pll Rz RN
Pe| i B B
By Py o By

where 7, (1 V) is the state vector distribution, x, =3, 3, y»] and N is the number of possible states.
In this combinational optimization problem, the transition probability matrix is an unique stationary matrix,
and the components p, are satisfied with the following conditions.

pijZO) Epi,"‘l (11)
J

In the case of the proposed algorithm, the outcome of a sampling vectors depend only on the outcome of the
previous sampling vectors. However, to predict the outcome of sampling vectors, optimization problems
we must know the unique stationary transition probability matrix P, which are determined in the following
manner using the previous sampling vectors.
Now, we consider the unique stationary transition probability matrix is determined by using the state vector
distribution y,,y,---,y, at sampled number of 0 to T. .

S

Po,yl'Puz"'}:;r-l.yr -ﬁ th” (12)

¥ !
<4 J

n,:Number of transition i to j
¥:.Given, S = N

Considering the number of previous sample sets #, to be integrated in the determination of the unique matrix
elements, determine the best estimator based on the logarithm of maximum likelinood which can be
expressed as the following equation.

logL=iinulogI,’, (13)

i=l j=l

These elements P, are satisfied with the following conditions.
P=0,i,j=128 (14.2)
217,-1, i=12,-8 (14.b)
Thus, these elements P, are to be evaluated by the following equation.
F=logL+ SM(SB-1=$[$nlogh; + 0 (35 - D] (15)
A, :Lagrange multiplier, i =1,2,--- S '

In order to evaluate the best estimator B, we must solve the equation (15) by maximizing F in the following
way.

oF P,

= =
oF, ”,-,-+ , (16.2)
B ==\, (16.b)
L= SE =03 = (16.c)

From equations (16.a) to (16.c), the unique stationary transition probability matrix £, is determined by an
finite number of previous sampling vectors.

B =n,/n (17)
n‘=§:nu

J=1



In this proposed procedure, the unknown unique stationary transition probability matrix P, is evaluated

recursively during the each sampling process, and the probability of the equation (17) determins the
allowable solution space D, in the algorithm.

3. Numerical Example

A numerical example is demonstrated with a 16 bar truss structure in F ig. 2 under earthquake excitation. The
model is subjected to the ground iotion in Fig. 3.
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Fig. 2. 16 bar truss structure
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Fig. 3. Input acceleration

In this numerical example, these design parameters such as cross section of ready-made steel products
shown in Table 1 are discrete and the objective function of design process is the total weight of the truss
structure which is to be minimize under the constrant of 5.0cm maximum displacements of nodes during
earthquake excitation. In this algorithm, each discrete design parameters are randomly sampled from the

region of solution space, and the allowable region is updated and condensed from the objective function.
The, sample size is shown in Table 2.



Table 1. Ready-made steel products

" No. A{cm*2)
1 1.238
2 1.799
3 3.096
4 3.971
5 " 4,562
6 6.769
7 9.513
8 11.200
9 14.450
10 17.170
11 20.410
12 27.620
13 35.260
14 53.610
15 75.410
16 99,730
17 103.300
18 120.100
19 157.100
20 177.300
21 197.600

Table 2. Sample size

Sample Size

Case 1 100
Case 2 50
Case 3 20

The results are shown in Fig. 4. In the case of the 50 and 100 sample vectors, the proposed procedure gives
good combinational optimization design from the minimum weight and minimum displacements of nodes in
the 16 bar truss structure under a seismic loading.
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Fig. 4. Convergence Process of the objective function



4. Concluding Remarks

A stochastic combinational optimization procedure is proposed and through numerical example of an
optimum steel structural design, the following conclusions can be drawn.

(1) A stochastic combinational optimization algorithm is proposed, which uses an importance sampling
procedure based on a Monte Carlo method. In this proposed procedure, discrete design parameters are
randomly sampled from region of solution space, and the allowable region is updated and condensed from
the objective function.

(2) In the proposed combinational optimization procedure, the unknown unique stationary transition
probability matrix of a Markov chain is evaluated recursively during each sampling process.

(3) It was found that the procedure is a stable and robust determination of design parameters, and can be
easily applied even for optimum design problems under seismic loading, since the procedure handles with the
algorithm of an importance sampling procedure, in parallel with structural analysis.
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