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ABSTRACT

This paper describes an optimal adaptive and predictive control system and its digital simulations for a
single-degree-of-freedom system subjected to earthquake loading. In this system, an active mass driver
system and an equivalent variable mass system are employed as an active control method. Prediction of
earthquake input and structural identification are performed by using feedback neural networks based on the
error back-propagation method. To make proper training data of structural identification, the genetic
algorithm is employed. Optimization is performed by means of maximizing decision. In maximizing
decision, optimal target control variables are determined by using assumed membership functions of target
responses. Results of digital simulations show the effectiveness of the proposed control system.
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INTRODUCTION

Recently many researches on active control of structures are carried out (Chong et al., 1990 and Soong et al.,
1991). To develop the dynamic control system of civil engineering and building structures, it is necessary to
take account of their special features such as complexity, uncertainty and large scale (Yao, 1972 and Yao et
al., 1987). Kawamura, one of the authors, and Yao (1990) already proposed a new idea of the application
method of fuzzy logic (Zadeh, 1965) and fuzzy maximizing decision (Bellman et al., 1970) to civil
engineering structures subjected to earthquake loading. According to this paradigm, the authors presented
fuzzy optimal adaptive and predictive control systems and those digital simulations (Kawamura et al., 1990
and Tani et al., 1992). In these system, to realize an effective control system, it is also necessary to perform
the prediction of earthquake inputs and structural identification accurately. So, the authors employ multi-
layered neural networks based on error back-propagation method (Rumelhart et al., 1986) and also presented
an active control method and its digital simulations (Tani et al., 1993 and 1994). Furthermore, to improve
the accuracy of proposed control systems, a neural network, which has feedback loops from the output layer
to the input layer at the training of it, is employed to predict the future earthquake inputs and structural



identifications (Tani et al., 1994 and 1995b). This neural network was proposed by Jordan (1989) and
Matsuba (1991) pointed out the effectiveness for the prediction of time series data.

In this paper, to improve the accuracy of proposed control systems, a selection method of the training data of
neural network of structural identification by the operation of Genetic Algorithm (Holland, 1993) is also
employed (Tani et al., 1995a). A fuzzy optimal active control system is proposed by neural networks which
are trained the training data using the proposed method. Objective building is assumed to be one-degree-of-
freedom system with an active mass driver system at the top of building. ~As active control methods, an
equivalent variable mass method is employed. Digital simulations are carried out for the objective structure
to verify the effectiveness of the proposed active control system against the earthquake loading.

OUTLINE OF CONTROL METHOD
Flow chart of Control System

Fig.1 shows a flow chart of fuzzy optimal control system (Kawamura et al., 1990) employed in this system.
This control method has following special features:

1) Target responses and control variables are described with membership functions of fuzzy theory,

2) Real time prediction of earthquake input and structural identifications are performed,

3) Optimization is performed by using fuzzy maximizing decision (Bellman et al., 1970).

Fundamental Assumptions

Fig.2 shows a controlled structure employed in this paper. This structure is assumed to be single-degree-of-
freedom system with an active mass driver at the top of it. It assumed that mass of structure (m1, and mg),
spring constants (k1 and k3) and damping factor (c] and cq) are constant and assumed values of them are
also shown in Fig.2. As a control method, an equivalent variable mass method is employed. Equations of
motions are as follows:

m,§, +¢,y, —cy(y, -y +ky, —ky(ys—y)+u, =-mx ¢))
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where y;, ¥1, ¥1:displacement, velocity and acceleration of the structure relative to the foundation at the first
story, Yq, ¥d, Yq:those at the active mass driver, X :acceleration of earthquake, u:control force, « : reduction
factor. Control force u is calculated by Eq.(3) and activate to the structure by Eq.(1). In this system, « is
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Fig.3 Assumption of earthquake inputs and structural responses (Kawamura et al., 1990)

employed as a control variable. In this system, a control interval time A t is also introduced to make this
control more practical (Kawamura et al., 1990). X; and Yj in Fig.3 are defined as the i-th maximal absolute
values of x and y within i-th control interval A t; and optimal control variables are determined by the
maximum absolute values of earthquake inputs and structural responses within each At. Here, the maximal
absolute values X and Y are assumed to be that of earthquake input and those of response displacements of
the structure, control forces and strokes of actuator, respectively. The i-th control variable « j is assumed to
be kept constant during A t;.

PREDICTION OF EARTHQUAKE INPUTS

Fig.4 shows a multi-layered neural network for the prediction of earthquake inputs. This network has 4
layers, i.e., an input layer with 6 units, two hidden layers with 12 units and an output layer with 3 units.
Details of input and output layers are shown in Table 1. This network has feedback loops from the output
layer to input layer and the differences A X,=T,-Xj are feedback to the 4th, 5th and 6th units of input layer
at the training of neural network. Here, T, is teaching data and X, is prediction values by the neural
network in each training stage. In the prediction of earthquake inputs, zero is input to those three units in
the input layer. As the training data, three observed earthquakes, i.e., Nos.1, 3 and 4 in Table 2 are
employed and maximal acceleration is normalized to 200 gal. Control interval At is assumed to be 0.6 sec..
At first, maximal acceleration data in each At are calculated and 200 sets of training data, i.e., the first 45
data in No.1 (EERL, 1976), the data between 35th and 109th in No.3 (AlJ, 1992) and the last 85 data in No.4
(Al, 1992), are employed. Input and output values are normalized between 0 and 1 by normalized function
in Table 1. The training is terminated when the average values of error are less equal to 0.01 or the number
of times of training reaches to 200,000. The training program of neural network with feedback loops is

developed based on that by Yagi and Suzuki (1987).

PREDICTION OF STRUCTURAL RESPONSES (STRUCTURAL IDENTIFICATION)

Fig.5 shows multi-layered neural networks for the prediction of structural responses (structural
identification). These neural networks has 4 layers, i.e., an input layer , two hidden layers and an output
layer. Details of input and output layers are shown in Tables 3 and 4. This network also has feedback loops
from the output layer to the input layer. As for the network as shown in Fig.5(a), the differences between
teaching data (Y(T) and U(T)) and prediction values by neural network (Y(P) and U(P)) such as Y(T)-Y(P)
and U(T)-U(P) for response displacements and control forces, respectively, are feedback to 4 units, i.e., 7th
to 10th units, of the input layer at the training of neural network. In the prediction of structural responses,
zero is input to those six units in the input layer.

In the preceding system (Tani et al., 1994 and 1995b), many earthquake response analysis are carried out to



Table 1 Input and Output Units of Feedback Neural Network for

Output Layer the Prediction of Earthquake Input
Ta |The maximal eartghauke input in the a-th control Interval
12 Hidden Layer 2 Input Ta+1 |The maximal eartghauke input in the a+1-th control Interval
Ta+2 |The maximal eartahauke input in the a+2-th control Interval
) 12 Hidden Layer | Layer Unit 4 |in trainingA Xa+3=Ta+3-Xa+3, in prediction: QT:Teaching Data

Unit 5 [in training:A Xa+3=Ta+3-Xa+3, in prediction: 0X:Prediction
Unit 6 |in training:A Xa+3=Ta+3-Xa+3, in prediction: 0

Input Layer Output Xa+3 |Prediction Value in the a+3-th control interval

Ta Ta+1 Ta+2 Xa+4 |Prediction Value in the a+4-th control interval

Fig.4 Feedback Neural Network for the Layer Xa+5 |Prediction Value in the a+5-th control interval
Prediction of Earthquake Input Normalizing Func. | X/Xmax__(Xmax=200 gal)

Table 2 Observed Earthquake Waves

No. Place of Date of | Direct.] Duration} Max. Acc. Ref.
Observation Occurrence (sec.) (gal)
1| Taft 1952.06.21 INO9OE 54.38 175.90 |EERL, 1976
2]El Centro 1940.05.18 |NOOOE 53.78 341.70 |EERL, 1976
3|Hachinohe 1968.05.16 INOOOE 35.99 225.00 |The BC of Japan, 1986
4]Twai-Minami(KT522) | 1987.12.17 [NO9OE] 117.00 43.62 |AlJ, 1992

Table 3 Input and Output of Feedback Neural Network for the
Prediction of Structural Responses:(Y and U)

lyi The maximal response displacement in the i-th control interval
Yi+1 Ui+l Yi+2 Uit2 Jui The maximal control force in the i-th control interval
i The reduction factor in the i-th control interval
Output Layer al
P 4 Input a1+l The reduction factor in the i+1-th control interval
Xi The maximal earthquake input in the i-th control interval
Hidden Layer 2 Xi+!1 The maximal earthquake input in the i+1-th control interval

fUnit 7 fintraining:  Yi+1(T)-Yi+1(P), in prediction: 0; (T):Teaching Data
[Unit 8 in training:  Ui+1(T)-Ui+1(P), in prediction: 0

Layer [Unit9 [lin training: Yi+2(T)-Yi+2(P), in prediction: §

JUnit 10 Ii_n training:  Ui+2(T)-Ui+2(P), in prediction: 0

Hidden Layer 1

Input Layer Output Yi+l The maximal response displacement in the i+1-th control interval
Yi Ui ai aitlXi Xi+l 7 - 10 Ui+l The maximal control force in the i+1-th control interval
(a) for Structural Displacement and Control Force Layer Yi+2 The maximal response displacement in the i+2-th control interval
Ui+2 The maximal control force in the i+2-th control interval

Normalizing Func. [Y/3.0, U/1.0, X/200

Table 4 Input and Output of Feedback Neural Network for the
Prediction of Structural Responses:(S)

Si 'The maximal control force in the i-th control interval
al The reduction factor in the i-th control interval
Input a1+l The reduction factor in the i+1-th control interval
Xi The maximal earthquake input in the i-th control interval
Xi+1 The maximal earthquake input in the i+1-th control interval
Si ai «i+lXi Xi+16 7 Layer Unit6 |in training:  Yi+1(T)-Yi+1(P), in prediction: 0; (T):Teaching Data
(b) for Stroke of Actuator l_lnlt 7 in tramm.c: Ui+ 1(T)-Ui+1(P), in pre(:llcnon: 0 i
Output  |Si+l The maximal stroke of actuator in the i+1-th control interval
Fig.5 Feedback Neural Network for the Layer  |Si+2 | The maximal stroke of actuator in the i+2-th control interval
Prediction of Structural Responses Normalizing Func. | §/100, X/200

obtain the suitable training data of the neural network by using the assumed structural characteristics and the
control variable which are changed randomly. Then, many times of try and error are necessary to obtain and
set the training data. In this paper, a selection method of the training data of the structural identification is
proposed by using Genetic Algorithm (Holland, 1993). At first, a chromosome is assumed as shown in
Fig.6. Each 4 bits of it represents a control variable a of one control interval At. Each bit has a binary
values such as 0 or 1. These control variables represented by binary values are decoded into decimal values
by using Eq.(4). Here, maximal control variable « 54 is assumed to be 0.6 and the variable Decode show
a decoded control variable. Total control interval is assumed to be 30, then the total bit length of a
chromosome is 120. The population is assumed to be 30. Initially, each chromosome is assumed randomly.
Using these chromosomes, earthquake response analysis are carried out and maximal absolute values of
structural responses, the strokes of the actuator and control forces are calculated. By using these results, the
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Fig.6 An Example of Chromosome
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evaluation of each chromosome is performed. The evaluation method is assumed as shown in Fig.7.

The evaluation of each chromosome is performed by using the assumed membership functions of the
structural response Y, the stroke of the actuator S and the control force U as shown in Fig.7. By using the
results of earthquake response analysis, the membership values of yy, u, ¢y in the i-th control interval
are obtained and the minimum value g j of these membership values is obtained. Summation of y ; is
assumed to be the fitness value of each chromosome. By using this fitness value, a roulette wheel parent
selection method and one-point crossover method are employed as a crossover method and the crossover is
performed in accordance with the fitness values of each chromosome. The operation of mutation is also
employed. The total generation of GA operations are assumed to be 100 and the chromosome which has the
maximal fitness value is selected as the most suitable training data of the neural network.

The flow chart of GA operations are shown in Fig.7. Here, two earthquake waves Nos.2 and 3 in Table 2
are employed and the maximal acceleration value is regulated into 200 gal. The control interval At is
assumed to be 1.2 sec. The initial conditions and the results of GA operations are shown in Table 5. Two
types of membership functions are assumed as shown in Table 6. According to these operations, 4 training
data are obtained. The program of GA operations is developed based on that by Gorldberg (1989).



Finally, input and output data of the neural network are normalized between 0 and 1 by normalized function
as shown in Tables 3 and 4. Total number of training data is 144 sets. The training is terminated when the
average values of error are less equal to 0.001 or the number of times of training reaches to 50,000 and/or the
average of the training error is less equal to 0.0001. The same training program is used in case of the
prediction of earthquake inputs.

OPTIMIZATION BY FUZZY MAXIMIZING DECISION

In this system, control interval At is introduced (Kawamura et al., 1990), and optimization is performed by
fuzzy maximizing decision (Bellman et al., 1970) by using maximal absolute values of the response
displacement Y, the control force U and the stroke of actuator S in each At. Here, membership functions
are assumed for Y, U and S as shown in Fig.8, respectively, taken account of comfort, structural safety, the
limitation of control devices and the cost of control and so on. In Fig.8, x denotes the membership degrees
of Y, U and S. By using the neural network of the prediction of earthquake input, the maximal absolute
value of earthquake input X in the next control interval is predicted and by using those of structural
responses, maximal absolute response values of Y, U and S in the next control interval are also predicted. In
these predictions, the next control variable « is changed parametrically. Consequently, those values are
transformed into the plane of membership degree x and control variable « by using assumed membership
functions as shown in Fig.9. The maximizing decision is performed for all «. In these results, the optimal
control variable, which has the largest membership degree p *, is determined as optimal control variable
a * as shown in Fig.9.
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Fig.8 Assumed membership functions Fig.9 Maximizing Decision
DIGITAL SIMULATION

Here, digital simulations on fuzzy optimal control are carried out by using trained neural networks and
maximizing decision described in preceding chapters. Values of structural characteristics are employed as
shown in Fig.2. The control interval is assumed to be 1.2 sec. (= A t) for the prediction of structural
responses and maximizing decision and 0.6 sec. (= A t/2) for the prediction of earthquake inputs. Therefore,
the prediction of earthquake inputs is performed twice in each At. So, the maximal value in the second
prediction is employed as the prediction of earthquake inputs in that of structural responses. Furthermore,
proposed method can not determine the optimal control variables at the first control interval. Then, the
control variable « 1=0.3 is assumed as the initial values in the first At. The reduction factor « is assumed
to be between 0 and 0.5 at intervals of 0.05. Membership functions are assumed as shown in Fig.8.

Fig.10 shows the comparison between observed and predicted earthquake waves in each At in case of
earthquakes Nos.1 and 2 in Table 2. Fig.11 shows the results of active control in case of earthquake wave
No.1 in Table 2. Fig.12 shows the comparison between the results of active control and the assumed
membership function in case of earthquake wave No.1 in Table 2.



- - -~ Predicted 100

50 50! '
OL. | (seC.) O ' 1 i ) ] (SCC.)
0 20 40 60 0 20 40 60
(a) No.1 in Table 2 (b) No.2 in Table 2

Fig.10 Comparison between Observed and Predicted Earthquake Inputs in each Control Interval (At=1.2 sec.)

& (Cm%' \ — -~ Uncontrolled 14 eafter Control ﬁssgmedh‘
4 I’ \"\f . Controlled ¢ ¢ Fﬁﬁ Cﬁ:’ﬁ n 1P
2 . TN _._’.-__;_’_‘.'_Predicted 0.5
0 : - (sec.) 0 Y(cm)
0 20 40 60 0 1 2 3 4
(a) Comparison between Uncontrolled and Controlled Response (a) Response Displacements
Displacements
755(cm) Controlled
50 - - - - Predicted
25
N A R L S(cm)J
0 20 40 60 0 25 50 75 100
(b) Changes of Strokes of Actuator (b) Strokes of Actuator
0.75 uen Controlled 1.4
0.50 : - . - - Predicted
025 x A 0
0 -M\uw\l“k ”~ 1 (sec.) 0 L v,
0 20 40 60 0 0.2 04 0.6 0.8 1
(c) Changes of Control Forces (c) Control Forces
Fig.11 Optimal Control Results(No.1 in Table 2) Fig.12 Actual Membership Plane after

Control(No.1 in Table 2)

CONCLUSION

In this paper, an fuzzy optimal control system of structures subjected to earthquake loading is proposed by
using the neural network with the feedback loops at the training. The training data are selected by using the
genetic algorithm. The objective structure is assumed to be single-degree-of-freedom system with active
mass driver. Digital simulations are carried out and following conclusions are obtained:

(1) Proposed active control system can decrease the structural responses well in comparison with non-
controlled responses. (Fig.11)

(2) As for the prediction of earthquake inputs, proposed neural network can predict the future maximal
accelerations well in case of earthquake Nos.1 and 2 in Table 2. (Fig.10)

(3) As for the prediction of structural responses, proposed neural network can predict the quantitative
characteristics of the future maximal structural responses in case of earthquake No.1 in Table 2.
However, the accuracy of the prediction of strokes of actuator is rather worth than that of response
displacements and control forces. (Fig.11)

(4) As for the results of active control, the proposed selection method of the training data by using genetic



algorithm is effective to set the suitable training data systematically and easily. (Fig.11)

(5) The comparison between the controlled results and the assumed membership functions shows that the
controlled structural responses can be distributed around the assumed membership functions. Therefore,
fuzzy maximizing decision is effective for multi-objective optimizing problem. (Fig.12)

(6) Above all, it is proved that the proposed control system is proved to be effective for the active control of
buildings. Actually, it is necessary to perform further training by using another earthquake inputs and
structural responses to realize more effective and practical control system.
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