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ABSTRACT

This paper describes a stochastic approach to the analysis of stability of a slender block, standing free on a
plane subject to a seismic motion: the stability threshold is identified with the attainment of an appropriately
defined "energy level”. This approach is applied to a block which at first is not allowed to slide; then, an
extended model is introduced, which takes into account the energy dissipation due to the short-duration
slidings subsequent to impacts. The results of an extensive numerical investigation, that made use of
artificial accelerograms compatible with the Eurocode 8 spectra, are presented. The most significant
numerical results are shown in the block size vs. slenderness plane by means of the level curves of the
probability that the total energy - hence the maximum rotation - remains below each given value
(isoprobability lines).
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INTRODUCTION

The dynamic behaviour of systems of rigid blocks in unilateral contact with each other and with the base
surface under a given motion of the support can give useful informations about the seismic response of many
structural or non-structural systems. Indeed, the first studies on the seismic response of structures that can be
modeled as single slender blocks standing on a horizontal moving plane, date back more than a century: they
were mainly intended to get an estimate of the intensity of earthquakes from the study of the response of
obelisks, tombstones, etc., but also of columns built for this specific purpose. During the last decade the
problem has been extensively studied of the seismic safety of monumental structures made of simply
supported stone blocks without mortar (e.g. obelisks, ancient temples). Typical systems like a single block, a
multiblock column or a trilith (two columns and a lintel) have been studied, and the relevance has been
underlined of the possible slidings between the blocks and with respect to the ground, hence of a correct
treatment of frictional effects (e.g. Sinopoli, 1987; Augusti and Sinopoli, 1992; Sinopoli and Sepe, 1993).
More recently also the seismic behaviour of objects contained in buildings and modelled as rigid bodies (like
instrumentations, art objects in Museums, etc.) is receiving an increasing attention (Augusti and Ciampoli,
1996).



All these studies show that, however refined the mechanical model, the response to a specific input
accelerogram is by itself of little significance with regard to the actual seismic response and safety of the
considered structure. In fact, the dynamics of single-block or multi-block systems of this kind is governed by
non-linear and discountinous differential equations, due to large displacements, changes of the contact points
and axes of rotation at each impact, slindings in presence of friction; therefore slightly differences in the
initial conditions or in the mechanical or geometrical parameters, or also a little perturbation of a given
accelerogram, might turn out a completely different motion. It seems therefore quite interesting to try and
develop stochastic analyses of the problem.

From this point of view, it can be useful to describe the response not by means of the state variables, but
through some appropriate functions of such variables, able to give in a straightforward way a measure of the
probability of collapse and easier to obtain from a given input, so that their statistics can be evaluated, either
directly or by simulation.
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Fig.1 - Typical examples of "rigid blocks":
a) monumental structures; b) overhead tanks; c) instruments; d),e) art objects (statues, vases).

In this paper the treatment will be limited to single blocks, standing free on a plane subject to a seismic
motion. In this case, collapse can be identified with overturning, and an adequate, albeit approximate,
measure of the probability of collapse can be obtained from the ratio between the total energy attained during
the motion and an appropriately defined critical value. This energy approach, described in detail in a
subsequent Section, has been applied to two mechanical models, the first of which is not allowed to slide on
the supporting plane, while the second model can slide and thus dissipate further energy.

MODELS OF BLOCK BEHAVIOUR

The first model studied (Fig.2) was proposed by Housner (1963) to describe the plane motion of a rigid
slender parallelepiped of mass M, subjected to a given horizontal acceleration afz), and can be applied to
blocks of any shape, indicating by 2b the width of the base and by & the height of the centroid on the
supporting plane. The geometry of the block is described by the size R and the slenderness ratio A = i/b, or
equivalently by the critical angle & = arctg(b/h) corresponding to the configuration of unstable statical
equilibrium. It is assumed that the block cannot slide on the supporting surface but can only rotate about
either edge of its base, O and O'. The minimum (threshold) value a, of the horizontal acceleration of the
support able to initiate the rocking motion of a block is given by the West formula,
b

a5 =g M

in which g is the acceleration of gravity. However, it is well known that under an imposed alternate support



motion like a seismic motion the block can survive, rocking without overturning, to peak accelerations
significantly larger than a,. In fact, the block rocks, i.e. rotates alternatively about O and O, impacting on the
supporting plane every time the angle of rotation @ becomes nil: the motion is described by a nonlinear
second order differential equation, in which a very peculiar type of nonlinearity appears: in fact, the restoring
moment is due to the weight of the block and plotted versus @ exhibits a sharp discontinuity at 8 = 0,
because of the alternative rotation axis (O or O"); then, for either 8 > 0 or 6 < 0, the moment decreases with
increasing absolute values of the rotation, and this decrease may be significantly nonlinear for stocky blocks
near the overturning condition 6 = * q. In this model, in which no sliding occurs, energy is dissipated only
because of the inelastic impacts between block and supporting plane: the law of conservation of angular
momentum leads to smaller velocities of rotation after each impact, and this decrement depends only on the
slenderness, larger energy dissipations corresponding to less slender blocks.
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Fig. 2 - Housner Model Fig. 3 - Extended model (after Sinopoli, 1989)
before the impact: rotation about O; before the impact: assume rotation about O;
after the impact: rotation about O'. after the impact: rotation about O' plus translation.

The Housner model so far described, in which the friction between the block and the supporting plane is
considered large enough to prevent any sliding, is exact in limit case of infinite slenderness A, and is all the
more acceptable the larger is A. Recent papers (Sinopoli, 1989; Sinopoli, 1996) have shown that the impact
always gives rise to some sliding; if before the impact the block rotates about the bottom edge O (Fig.3) , the
motion after the impact is a rotation around the other edge O' plus a horizontal translation of the edge itself,
that is a rotation about a centre C below O'. C is closer to O' the larger is the slenderness A, and coincides
with O' in the limit A— oo . Viceversa, when b/h > {272 (stocky blocks), the distance CO' is infinite, and the
motion subsequent to the impact is a pure traslation. In any case, for a given angular velocity of the rocking
block before the impact, the angular velocity after the impact is smaller than in the Housner model, because a
part of the kinetic energy goes into the traslational motion; however, for usual values of the friction
coefficients, the translational kinetic energy is rapidly dissipated and the sliding dies out very soon. This
kinematic approach (Sinopoli, 1989), which assumes that the friction forces do not work during the impact
and therefore do not influence at all the subsequent motion, represents a limit assumption opposite to the
Housner model: a more refined model is at the moment being developed (Sinopoli, 1996).

If one excludes that the amount of slidings is so large to produce other unacceptable effects, as for example
is the case of art objects allowed to slide (Augusti and Ciampoli, 1996), also for this model collapse can be
identified with overturning, and it can be assumed that the sliding caused by the impact has the only
consequence of reducing the angular velocity, due to the larger dissipation.

ENERGY APPROACH

As well known, (see e.g. Uang and Bertero, 1990) seismic excitations introduce energy in a structural
system; a part of this energy is stored as potential, kinetic or elastic energy, while another part is dissipated:
for the Housner model of block, the dissipation is due only to the impact; for the extended model, dissipation



is also due to sliding. Denoting by E(?) the total energy of the system at a given time ¢, sum of potential and
kinetic energy, E(t) = U(t) + T(t) (as it is sometimes done for elastoplastic oscillators, it is convenient to
consider relative energies, i.. energies referred to the moving support) and by D(z) the energy dissipated
from the beginning of the support motion, the input energy is

I()=U(t)+T(1)+D(1) (2

For the free block, the overturning condition coincides with crossing the configuration of static unstable
equilibrium (6 = &, Fig.2), and can be expressed as 8 > o.. Under external excitation, the expression

E(t)=U(t)+T(t)>U* = overturning 3)

where U* is the potential energy in 8 = o appears a good approximation of the collapse condition. This
hypothesis is confirmed by the fact that the numerical investigation has seldom shown motions without
overturning with E(z; larger than U*, and in these few cases only slightly larger. More generally, a correlation
has been found between the total energy and the largest rotation during the motion, so that the probabilities

P =Prob(E<KU*} ; K<I CY)
give significant estimates of the probability of attaining each prescribed maximum rotation and, for K=1, of

collapsing.

With a similar energy approach, and describing the seismic action through the pseudovelocity response
spectrum, Housner (1963) estimated that, for a given pseudovelocity Sy, a block with size R and critical
angle o has a survival probability equal to 50% if

a—arctgi— SV MR2 = SV 2 5
l ,/gR Io .‘,gR 4 ()

Ip being the inertia moment around a bottom edge. Note in particular the size effect shown by eq. (5): for a
given slenderness 4, the seismic intensity corresponding to an overturning probability of 50% increases with
the block size R.
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Fig. 4 - Eurocode 8, type B soil: a) acceleration response spectrum, b) pseudovelocity response spectrum

NUMERICAL INVESTIGATION

An extensive numerical investigation has been performed (Augusti and Sepe, 1995; Sepe and Augusti, 1995;
Cattaruzza, 1996): only the main results can be reported here. As already indicated, two models have been



considered, namely, i) the Housner model, ii) the extended model in which, due to a rapidly dying
traslational motion, the kinetic energy of the rotational motion after the impact is reduced. The seismic
excitation (assumed horizontal) has been simulated by 50 artificial accelerograms in accord with the
response spectrum B of Eurocode 8 (medium soil) (Fig.4), with durations of 30, 40 or 50 seconds and peak
ground acceleration equal to 0.35 or 0.45g. The amplitude of the accelerograms is modulated by a
deterministic function, that rises linearly from zero to the maximum in the first 5 seconds, and decreases to
zero in the last 15 seconds.

The response of about 60 blocks, with slenderness A and size R respectively in the ranges (3 - 7) and (0.5 -
6.0 m), has been obtained by numerical integration. In particular, in accord with physical evidence and
previous well known results (Housner, 1963; Aslam et al. 1980; Yim et al. 1980), it is confirmed that the
overturning probability increases with increasing slenderness and decreasing size, and of course increases
also with the duration of the accelerogram.
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Fig.5 - Housner Model: P = Prob {E < KU*} in function of size R; A= 3.5, ag= 0.45g; duration 1;=50 s
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Fig.6 - Housner Model: P = Prob {E < KU*} in function of slenderness A; R =4 m a,=0.35g; t;=50 s

The probabilities (4), referred to four values of X, namely
KU*=025U* ; 0.5U* ; 0.75U* ; U*

have been obtained by considering the response of a given block to the whole set of simulated accelerograms
as a statistical sample. Quite obviously, for a given geometry of the block the survival probability, i.e. the
probability that the maximum total energy remains below the critical value U* (K=1), decreases with
increasing peak acceleration and increasing duration of the support motion; the probability that E < KU*,
with K<1, varies in a similar way. Fig.5 and Fig.6, which refer to the Housner model, underline respectively
the influence of the size for a block with given slenderness, and of the slenderness for given size.



Note that sometimes accelerograms with E > U*, i.e. satisfying condition (3), do not lead to overturning: in
fact, for particular action histories, the total energy can reach a maximum value slightly greater than U* and
then decrease. But whenever the total energy is significantly larger than U* (E > 1.1 - 1.2 U*), the motion
leads eventually to overturning. Therefore, eq.(3) is a safe hypotesis, not too far from numerical evidence.

ISOPROBABILITY LINES

It has deemed interesting to describe the results in the plane of the geometrical parameters A and R, by means
of the lines corresponding to costant values of the probability (4) for given values of K (isoprobability lines).
The lines shown in the following plots have been obtained by linear regression of the numerical results.

Some isoprobability lines pertaining to K=1 (survival probability) are shown in Fig.7 and 8, both for the
Housner model (broken lines) and the extended model (solid lines): the imposed motion lasts 50 seconds,
the peak acceleration is equal respectively to 0.45 or 0.35g.
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Fig.7 - Survival probability: P = Prob{E <U"}, ag = 0.45g, duration 50 s
b)-f) Housner model; b')-f ') extended model; a) Housner's eq.(5)
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Fig.8 - Survival probability: P = Prob{E <U"}, ag = 0.35g, duration 50 s
b)-f) Housner model; b')-f ') extended model; a) Housner's eq.(5)



In Figs. 7 and 8 Housner's eq. (5) is also plotted (dotted lines): it represents the geometry of blocks with a
50% survival probability under seismic actions with a given spectral pseudovelocity Sy. In particular (cfr.
Fig.4) Sy = 1.05 m/s or Sy = 0.82 m/s respectively for peak accelerations equal to 0.45 or 0.35 g. It is evident
that for seismic action with the assumed spectra and duration and for the geometry of the blocks under
consideration, eq. (5) turns out to be unsafe if compared with the numerical results given by Housner model
(broken lines), because it predicts a survival probability (or equivalently an overturning probability) equal to
50% for blocks that show a smaller survival probability.

Comparing the results obtained for the extended and the Housner model, it is also evident that the sliding can
reduce significantly the overturning probability of the block. On the other hand, the sliding itself could
become unacceptably large; this aspect of the dynamic behaviour, already investigated in recent papers on
the seismic behaviour of art objects (cf Augusti and Ciampoli, 1996 and the references quoted therein), has
not yet been considered in the light of the energy approach.

In an analogous way, it is also possible to plot in the A - R plane lines that correpond all to the same
probability (4) but to different energy levels K: for example, Fig.9 refers to P = 95%. If the block is
represented in Fig.9 by a point below (above) the line K=1, its probability of survival is less (more) than
95%, i.e. its probability of overturning is more (less) than 5%.

C
; &
/' / / . c' d’
5 Ls 7 B8/ AL // A
a
/o // / / / / a-a') K=0.25
4 , / £

I 7 / b-b") K=0.50
[ 7, c-¢) K=0.75

/ //, / / // d-d) K=1.00
2 { ./// /

Fig.9 - P = Prob(E < KU*}=95%; a, = 0.35g, duration 50 s
a)-d) Housner model; a")-d") extended model

CONCLUDING REMARKS

This paper deals with the overturning probability under seismic actions of a single rigid block, described first
by the classical Housner model and then by an extended model that takes into account the energy dissipation
connected with the short-duration slidings that follow each impact between the block and the supporting
plane. Isoprobability lines (i.e. lines corresponding to blocks with a given probability to have a total energy -
and consequently a maximum rotation - below a prescribed reference level for given characteristics and
duration of the seismic excitation) have been plotted in the size vs. slenderness plane.

These results have been obtained in a numerical investigation, simulating the seismic action by artificial
accelerograms compatible with the response spectrum suggested by Eurocode 8 for medium soils, and
considering the responses to the artificial accelerograms as a statistical sample: an analytical formulation is
now under investigation. It is also well known that artificial accelerograms compatible with a given response
spectrum can sometimes be inadequate to obtain reliable information, and perhaps the obtained results



should be checked by analogous ones obtained with the use of a set of artificial accelerograms derived from
earthquakes records.

In any case, the presented diagrams give a straightforward, easy-to-read and effective image of the survival
probability of a single block with respect to overturning, in fuction of its geometrical parameters, which can
be very useful in a first screening of the seismic risk. It would be very important to obtain analogous curves
for other structural types so that detailed analyses can be limited only to systems prone to overturning. A
detailed analysis, in fact, requires large computational efforts and presupposes a good knowledge not only of
the geometrical parameters, but also of the mechanical properties of the materials and of the contact surfaces,
in order to consider in the correct way every influence on the dynamical behaviour; sometimes also the
hypotesis of plane motion so far assumed should be removed.
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