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ABSTRACT

Two important issues regarding steel moment resisting frames (MRFs) are addressed in this research. Firsi, an
improved design of Welded-Flanges—Bolted—Web (WFBW) moment resisting stcel connections was
investigated to mitigate the brittle damage observed during some recent earthquakes. Analytical investigations
were conducted on models of individual modified connections as well as MRFs with the modified moment
resisting connections using DRAIN-2DX. The analytical results indicated that the propos2d modification to the
beam ends could be an effective means to mitigate brittle connection damage that has occurred in WFBW
connections during recent seismic events without inducing any unfavorable effects on the overall seismic
behavior of the MRF. The second part of the research was the development of a systeranatic seismic damage
assessment approach for steel MRFs. A low-cycle fatigue connection damage model was developed, which
related the damage in a connection directly to the hysteretic energy dissipated in the connection. Based on this
connection damage model and a weight-averaging technique, a systematic damage assessment approach for

steel MRFs was studied. The overall damage assessment approach made it possible to assess quantitatively
damage to steel MRFs. This damage assessment technique will provide structural engineers with another

valuable tool for the design, retrofit and post—earthquake damage evaluation of steel frame structures.
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INTRODUCTION

Unprecedented cases of brittle and unpredicted failure of Welded-Flanges—Bolted—Web (WEFBW) connections
were found in steel moment resisting frames during some recent earthquakes. This type of connection has been
widely used in buildings with steel frame construction in seismic areas. Therefore, developing methods to retrofit
existing connections and design new connections became an urgent need within the steel design community in
the United States and elsewhere. In most cases, the brittle failures began with the initiation of cracks in the welds
at the beam—column interface after the welds were overstressed by transverse loads. Consequently, if the stresses
developed at the beam—column interface during a large earthquake ground motion can be reduced, the brittle
behavior of such connections could be accordingly reduced or even eliminated. In the first part of this research,
a method of modifying moment resisting connections to enhance the connection ductility was proposed. It was
based on the concept that a beam section weak in bending near the beam-column interface could be created to
reduce the stress developed at the interface during a cyclic loading process.
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The issue of quantifying structural steel damage resulting from an earthquake is of great importance. Being able
to quantitatively assess the seismic damage of a steel connection is the first step towards the development of a
rational seismic damage assessment approach for steel structures. The achievements of previous research on
damage analysis of steel structures were mainly in the low—cycle fatigue damage behavior of cyclically loaded
simple structural components. A connection is not a simple structural component since it is composed of beams,
columns, welds, etc.. Research has been performed to study cyclic damage characteristics of moment
connections (Krawinkler and Zohrei, 1983, Castiglioni and Losa, 1992). It was concluded that the connections
under cyclic loading exhibited low—cycle fatigue damage behavior. In the second phase of this research, a
hysteretic energy based connection damage model was developed to quantitatively assess the damage to moment
connections. Based on this connection damage model, a systematic damage assessment technique was
investigated for steel structures by accumulating the damage to the individual connections to arrive at story level
damage and total frame damage.

MODIFIED MOMENT RESISTING CONNECTIONS

During inelastic deformations, when a cross section of the beam near the beam—column interface in a connection
is made weak in bending, the first plastic hinge would form at that location. Generally, this beam section is more
ductile than the beam section at the beam-column interface where the welds are locatzd. Therefore, during
inelastic excursions from an earthquake, the inelastic deformation (energy) can be diverted away from the
susceptible beam—column interface to the weakened section. As a result, the ductility of this connections could
be increased. A modified moment resisting connection is illustrated in Fig. 1, where d is the depth of the beam
section.
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Fig. 1. Modified Moment Resisting Connection

Performance of the Modified Connections

The effectiveness and feasibility of the proposed modified connection was investigated analytically using the
structural analysis package DRAIN-2DX. The investigation is focused on two aspects: the cyclic behavior of the
modified moment resisting connections and the overall seismic behavior of a MRF with modified connections.

Cyclic Behavior of Modified Moment Resisting Connections. The numerical modelling of’ the connections was
calibrated against the full-scale cyclic testing data of a moment resisting connection conducted at the University
of Texas at Austin (Engelhardt and Husain, 1992). The subassemblage of one of the connections tested at UT
is shown in Fig. 2. The same connection subassemblage was used in the analytical study cf this research. In the
modelling, the columns were modelled using the beam—column element and the beams were modelled using the
fiber element.

To study the effectiveness of the improved ductility resulting from the modification, the cyclic behavior of a
original connection and four modified connections with different beam moment capacity reductions were
studied. The original moment resisting connection investigated was the analytical replica of the connection
shown in Fig.2. Other four connections investigated were modified from this original ccnnection. In the first
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Fig. 2. Connection Subassemblage

modified connection, the moment capacity after the flange area reduction at the location of’ the weak section was

equal to the moment capacity required to resist the moment caused by the lateral load at this location, M,;, which
was

L-d/2
M, = (—T/-Z M, (D

where L is the length of the cantilever of the connection, d is the depth of the beam section, and M, is the plastic
moment capacity of the original beam section. In three other cases, the beam capacities at the weakened sections
were 90%, 80% and 70% of M, , respectively. The lateral stiffness reductions resulting from the area reductions
of the beam sections were calculated. The strain level reduction at the beam—column interface as a measure of
the effectiveness of the modification for each case was obtained through the analysis for a cyclic load. The

extreme fiber strains developed at the beam—column interface for different connections during the cyclic load
were plotted in Fig. 3.
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Fig. 3. Extreme Fiber Strains at Beam—Column Interface for a Cyclic Load

For Case 1, where the plastic bending capacity at the weak section was My, it was found that the strain level
at the beam~column interface was reduced only 2.19%. But when the flange area was further reduced as in Cases
2, 3 and 4, which means the plastic hinge formed first at the weak section, the strain level at the beam—column
interface was reduced to a large amount. In the Case 2, with 90% of My atthe location of the weak section, 20%
reduction in the strain level at the interface for a typical inelastic loading cycle was obtained. In Case 4, the



material at the beam—column interface exhibited almost perfect elastic behavior. The reduction in the transverse
stiffness of the moment resisting connections was found to be very small, with the maximum reduction of only
3% in Case 4.

Frame with Modified Moment Resisting Connections. One concern about modifying the connections in a MRF
was whether the modifications in the beams would unfavorably affect the overall seismic performance of the
MRE. Analytical investigations were performed for a MRF with original connections as well as a MRF with
modified connections (MMRF). The original MRF was designed in accordance with the current version of the
seismic provisions in the Uniform Building Code. The MMRF was developed by modifying both ends of the
girders in the original MRF. The moment capacity reduction in the weak section of a girder, which was located
ata distance d/2 from the beam—column interface, was chosen to be 90% M,,; of the girder. The MMRF is shown
in Fig. 4.
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Fig. 4. Modified Moment Resisting Frame

Six California earthquake accelerograms, including a Northridge Earthquake accelerogram, were selected and
used in the time-history analyses of the original MRF and the MMREF. Similar to the numerical modelling of

the connection described earlier, the columns were modelled using the beam-column element and the beams
were modelled using the fiber element. Results from the inelastic time-history analyses for both frames were
compared with each other in the following aspects: the maximum story shears, the maximum story drifts and
the extreme fiber strain reductions at the beam—column interfaces. The extreme fiber strairis at both the interface
and the weak section of joint 7 resulted from the Northridge Earthquake are presented in Fig. 5.
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Fig. 5. Extreme Fiber Strains of Joint 7 during Northridge Earthquake
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Because of the different characteristics of the earthquakes, the resulting maximum story shears and story drifts
were quite different for the six earthquakes. Generally, it was found that the modificaticns resulted in slightly
smaller maximum story shears (maximum 3% reduction) as well as maximum story drifts (maximum 5%
reduction) in the modified frame. It was observed that the achieved reductions of the extreme fiber strains at the
beam—column interface in the MMRF were approximate 20% for large inelastic excursicns and 5% to 10% for
the excursions with small inelastic deformations. Large increases in strains were observe:d at the weak section.
It indicated that the plastic hinge, if there was any, would form first at the location of the weakened section and
would dissipate a large amount of hysteretic energy during inelastic deformations.

DAMAGE ASSESSMENT

The overall performance of a frame or building designed to resist a earthquake depends on the seismic
performance of the structural components, such as the connections. Therefore, in order to assess the seismic
damage of a whole frame, a hysteretic energy based steel connection damage model was developed first. Then,
based on this damage model, a systematic damage assessment approach for steel moment resisting frames was
investigated.

Hysteretic Energy Based Connection Damage Model

Because of the fact that the damage of a steel component in a structure subjected to a seismic ground motion is
in essence a low—cycle fatigue damage process, the low—cycle fatigue theory has been applied in the seismic
damage analysis of a steel component. Past experiments have demonstrated that the damage of a cyclically
loaded steel connection exhibited low—cycle fatigue behavior, although the damage characteristics depended not
only on steel material properties, but also on other factors such as, connection geometry. sectional properties,
the welding quality. In this research, the relationship between the damage occurring in a moment resisting
connection with a beam of W section and the hysteretic energy dissipated in the connection was established based
on three major assumptions: 1) Manson’s universal slope, 2) bilinear stress—strain relationship of the steel
material and bilinear moment-rotation relationship of the moment resisting connection, and 3) linear damage
accumulation rule. The level of damage occurring in a connection was described through the use of a damage
index, which ranges from zero (no damage) to one (total damage):

N
DI = Cy3 AE )
i=1

where AE; is the amount of hysteretic energy dissipated in the connection during a loading reversal i, which can
be obtained from an inelastic time-history analysis, and Cy is a parameter which depends on the geometry of
the connection, sectional properties of the beam in the connection, material properties and the fatigue ductility

coefficient of the connection, g'. The fatigue ductility coefficient for a connection depended on factors such as,
steel properties, member sizes, weld quality of the connection. Each type of connection possesses a specific value
for the fatigue ductility coefficient which could be obtained from experiments. This connection damage model
was evaluated by examining the values of the ductility fatigue coefficients calculated from the data of full-scale
connection tests. Because of the fact that the calculated values did reflect the physical meaning of the fatigue
ductility coefficient which was recognized by the pioneers in the metal fatigue field, this model was judged to
be an appropriate connection damage evaluation model. The value of the fatigue ductility coefficient reflected
the ductility of the connection and, similar to other material properties, followed a randorn distribution. Based
on data of three sets of full-scale tests on WFBW connections of typical sizes (Tsai and Popov, 1988, Tsai, et
al., 1995 and Engelhardt and Husain, 1992), the most probable value of the fatigue ductility coefficient for
WEBW type connections was statistically found.
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Global Damage Assessment

The approach to assess the level of damage of a moment resisting frame could follow a systematic procedure,
in which damage is assessed from the structural components level, to the level of each story, and finally to the
overall frame. As proposed in this research, the damage index for a joint was found through the damage
information of the local structural components, the damage index for a story was then calculated form the joint
damage indices, and eventually, the damage index of the overall moment resisting frame was obtained based on
damage information of the stories.

Joint Damage Index. The damage in a steel moment resisting frame caused by an earthquake ground motion is
expected to occur in the beam—column joint zone, or at the ends of columns or beams framing into the joint.
Theoretically, steel MRFs designed according to the Strong—Column—-Weak—Beam requirements with strong
joint panel zones will see the damage occurring in the beams at the joints. The damage level of a joint was
assigned the larger damage index of the two damage indices of the beams framing into the joint, which was

DI, = max {DI, DI} ®)

Joint T

where DJ; is the damage index for the beam connection left to the joint, and DJ; is the damage index for the beam
connection right to the joint.

Story Damage Index. The damage indices of all joints in a story were then weight-averaged by assigning
importance factors (weights) to obtain the damage index for the story. The importance factors were determined
from a serviceability aspect, where the importance factor for a joint was defined as the relative importance of
the joint on the lateral stiffness of the overall story where the joint is located. It was achieved by applying a lateral
force system similar to the force distribution obtained through the code prescribed direct seismic design
procedure. The formula for calculating a story damage index was

> di DIjoint ik+ !

4
zd, Dl .~ @

Jjointi

DI story T

where d; is the importance factor for joint i, and the influences of the more severely dameged joints to the story
damage are taken into account by the exponent k. The normalized damage index required the weights sum to
unity.

Frame Damage Index. Based on the assumption that all stories as the structural components have the equal
importance to make the frame a functional structure, a very simply weighting system could be employed for a
frame with » stories: the importance factor for the first story is I; the importance factor for the top story is 1/n;
and the values of importance factors for all other stories vary linearly between 7 and 1/n along the height of the
frame. This linear relationship is shown in Fig. 6. The normalized importance factor for the iy, story, w;, was

_ 2n + 129)

YET T+ D) )
Therefore, the overall damage index for the frame was
>3 w; DIsta i(k+1)
Dl = & (6)
frame k
: >3 w; D Isto;yi

where the exponent k has the same meaning as discussed for the above equations and the weights should sum
to unity.
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Fig. 6. Importance Factor for Different Stories

Depending upon the use of the damage index, the relationship between the story level and the importance factor
might deviate from the assumed linear relationship. Possibly, the more realistic calibration between the
importance factor and a story level will be something like the curve shown in Fig. 6. The determination of this
relationship should be based on actual earthquake damage and full-scale testing. The systematic damage
assessment approach proposed here for steel structures is similar to the approach for reinforced concrete
structures presented by Bracci e al (1989). The difference between the two approaches is in the determination
of importance factors for the joints and stories. Bracci ef al. determined the importance of a joint or a story

according to the total tributary gravity loads it carried. The results from the two set of approaches was compared
to cach other, and found to be similar.

CONCLUSION AND SUMMARY

Analytical investigations were performed on both cyclically loaded modified connections as well as a MRF with
modified connections subjected to six California earthquakes. The main findings were:

1) The stiffness of a modified connection changed due to the modification was very small;

2) With 10% reduction in the bending capacity of a beam section at a distance 4/2 from the
beam-~column interface of the connection, about 20% reduction in the extreme fiber strain at
the beam—column interface during a large inelastic deformation was achievedl; and

3) Comparison of the analytical results between a original MRF and a MMRF showed almost no
changes in the maximum story shears and story drifts induced by various California earthquakes.

The results from this research indicated that the use of the proposed modified connections in a steel moment
resisting frame can be a feasible solution to mitigate seismic damage. One observation about using the proposed
modified connection was: in spite of the advantages the modified connections have, the reliability of a modified
WEFBW connections would ultimately depend on the quality of the welding process.

For the damage assessment of steel structures, a hysteretic energy based damage model for moment resisting
connections was developed. The connection damage model related the damage level or a connection to the
hysteretic energy dissipated in the connection, which was realized as the direct cause of structural damage. The
systematic damage assessment approach, based on this damage model, made it possible to assess the seismic
damage of a steel MRF quantitatively. An important future research associated with the overall steel building
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damage evaluation is to find the range of damage indices which will be assigned to different damage levels, such
as collapsed, irreparable, repairable, adequate for normal functioning. The overall damagz assessment approach
can be used in many aspects, such as 1) the design of new buildings, where through the use of a damage index,
the prediction of the accumulated damage during cyclic deformation can be applied to form new design criteria
and the new design criteria will account for damage potential of the frame; 2) retrofit decision making prior to
earthquake events, where the level of protection can be determined through analysis, and therefore, appropriate
decision could be made to retrofit a structure to resist future earthquakes; 3) post—earthquake assessment, where
after an earthquake, the condition of a damaged structure can be evaluated to determine if the damage is severe
enough to warrant demolition of the structure or could some repairs be made so that the structure is adequate
for future use.
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