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ABSTRACT: 
 
The estimation of the intensity function of an earthquake record is a key step for the non-stationary stochastic 
representation of seismic action in dynamic structural analyses. In spite of its importance, only a few procedures 
have been applied to obtain the intensity function of a given earthquake record. Amongst them, the underlying 
stationary process (USP) method, proposed by Ferrer and Sánchez-Carratalá (2006), is the only procedure that 
can be considered as a standard method for earthquake analysis, since it can be systematically applied to fit any 
prescribed intensity function to any real record. Furthermore, it allows the quantitative assessment of the fitting 
by using some error parameter calculated from the underlying process. The USP method has been extensively 
applied to many accelerograms from several seismic regions using common unimodal theoretical or code-based 
intensity functions. However, these unimodal functions only attempt to model the amplitude evolution over the 
time of seismic events caused by a singular and instantaneous rupture process. The analysis of complex 
accelerograms, with two or more separate peaks produced by several fault ruptures or very different wave paths, 
can be accomplished by the composition of two or more single-peak intensity functions. In the present paper, the 
standard USP method is extended to solve the problem of fitting the amplitude modulation function of 
multimodal accelerograms. A numerical application of the proposed method to some real multimodal earthquake 
records is carried out, showing the ability of the USP method to accurately obtain the amplitude modulation 
function of complex accelerograms. 
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1. INTRODUCTION 
 
The intensity function, also called the amplitude modulation function, represents the time variation of the 
standard deviation of a non-stationary process and, therefore, its calculation is necessary to represent a seismic 
event as a uniformly modulated evolutionary stochastic process. Moreover, the specification of an intensity 
function is essential for the simulation of synthetic accelerograms, or for the application of random vibration 
techniques to structural dynamics (Sánchez-Carratalá and Ferrer, 2004). 
 
From a statistical point of view, a major drawback is found when trying to calculate the amplitude modulation 
function of a strong motion record, namely: a non-stationary process is inherently non-ergodic, and so the entire 
ensemble of realizations that constitute the process would be required to obtain the standard deviation function. 
Since only one record is usually available, the calculation of the intensity function becomes statistically 
impossible. However, the problem can be approximately solved by introducing some constraints in the procedure 
that are additional to the recorded data. Firstly, the general tendency of the standard deviation function can be 
found by identifying the main features of the earthquake record, i.e. rise time, strong motion duration, peak 
ground acceleration, etc. Furthermore, the functional shape of the intensity function is linked to the main 
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seismogenetic features of the earthquake (location and directivity of the fault, crustal structure, etc.) and the local 
conditions of the recording site (geotechnical and topographic profile, impedance effects, etc.). Some theoretical 
intensity functions have been proposed in the scientific literature and seismic codes to roughly model the main 
characteristics of an earthquake record, as listed above (e.g. Shinozuka and Sato, 1967; Jennings et al., 1968; 
Saragoni and Hart, 1974; Tung et al., 1992; UNE-ENV 1998-2, 1998). Thus, the lack of statistical data in a single 
earthquake record may be partly compensated by the implicit seismic information found in these semiempirical 
intensity functions. 
 
Several procedures have been used in the literature for the estimation of the amplitude modulation function (e.g. 
Cakmak et al., 1985; Ólafsson, 1992; Spanos and Failla, 2004), but none can be considered as a standard method 
because of their inability to fit any prescribed theoretical or code-based intensity function to any accelerogram. 
Recently, Ferrer and Sánchez-Carratalá (2006) have proposed a general fitting method that iteratively searches 
for a target underlying stationary process (giving rise to the ‘USP method’ name) and using the least squares 
method as a basis. Due to the excellent performance of this fitting method when applied with unimodal intensity 
functions (Ferrer and Sánchez-Carratalá, 2006, 2007), its extension is proposed to the case of complex 
accelerograms, i.e. with two or more different portions of strong motion and where multimodal intensity 
functions composed of several unimodal intensity functions must be used. Below, a concise explanation of the 
application of the method in the multimodal case is presented, and a numerical application is carried out. 
 
 
2. BASIS OF THE USP METHOD 
 
The USP method assumes that the earthquake is adequately represented by a uniformly modulated evolutionary 
stochastic process (Priestley, 1965), so that: 
 

 ∫
∞

∞−
π= )f(Z~d)tf2exp(i)t(I)t(a agg  (2.1) 

 
where i is the imaginary unit, t is the time, f is the cyclic frequency, { })t(ag  is the non-stationary stochastic 
process that models the ground acceleration, Iag(t) is a real deterministic intensity function with a slow variation 
over time, and { })f(Z~  is a complex-valued stationary stochastic process with orthogonal increments. By applying 
the mathematical expectation operator to the function )t(a 2

g , and after performing some simple algebra, the 
following expression is obtained: 
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agσ  is the variance function of the non-stationary process { })t(ag , and 2
s,agσ  is the variance of the 

underlying stationary process { })t(a s,g , which has the following spectral representation: 
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so that 
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The variance of an ergodic stationary process can be estimated from a discrete record by fitting a constant to the 
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squared record using the least squares method. Ferrer and Sánchez-Carratalá (2006) extend this property to the 
case of a uniformly modulated non-stationary process by substituting the constant with a parametric function 
Cag(t) related with the intensity function by the following expression: 
 

 )t(C
1N

N)t(I ag
2
ag −

≈  (2.5) 

 
where N is the number of points of the discrete record ag(ti), with ti=i∆t, i=1,2,…,N, and ∆t is the sampling time 
interval. The function Cag(t) need not be polynomial, so that the equations that minimize the error in the least 
squares method constitute, in general, a non-linear equation system and a numerical method must be applied to 
solve it (e.g. the Gauss-Newton method). In this paper, 2

s,agσ =1 is assumed in Eqn. 2.2. 
 
 
3. ERROR PARAMETER 
 
Once the intensity function has been obtained, some error parameter should be defined to assess the quality of the 
fitting, or to compare different functions fitted to the same accelerogram. In accordance with the method 
described above, an error measurement of the fitting can be obtained from the analysis of the underlying 
stationary record, ag,s(t), assuming that it would be perfectly stationary if an ideal intensity function that exactly 
verifies Eqn. 2.2 were used in Eqn. 2.4. In practical applications, only a duration-limited underlying stationary 
record, ag,sT(t), is available, being T the time interval where Iag(t) is different from zero. Besides, only the portion 
of Iag(t) in which it more accurately represents the evolution of the standard deviation of the process, can be 
expected to give a sufficiently stationary record. Thus, a reliable underlying stationary record, ag,s;r(t), which 
corresponds to the most accurate portion of ag,sT(t), is defined. For typical semiempirical intensity functions, a 
stationary interval T  that includes p=80~90% of the total energy released by the earthquake can be used. 
 
Ferrer and Sánchez-Carratalá (2007) have proposed a new criterion to assess the degree of stationarity of the 
reliable underlying stationary record, which is based on the expected energy content evolution of the underlying 
stationary process. The Husid function (Husid et al., 1969) of a stationary record ag,s(t) is: 
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The expected value of the Husid function of a stationary process of variance 2

s,agσ  is: 
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Therefore, the mean value of the Husid function of a stationary process is a linear function with a slope equal to 
the variance of the process. This property can be used to assess the stationarity of a record by comparing its Husid 
function (Eqn. 3.1) with the expected value of the Husid function for different times (Eqn. 3.2). So, an error 
parameter is defined as the coefficient of variation of Hag,s(t) in the stationary interval, i.e. the root mean square 
error of the Husid function Hag,s(t) with respect to its expected value E[Hag,s(t)], divided by the mean value of 
E[Hag,s(t)] in the stationary interval T : 
 

 

( )

2
s,ag

'N

1i

2
i

2
s,agis,ag

p,H
1'N

t)t(H

T
2

σ
−

σ−

=ε

∑
=

 (3.3) 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
 
where εH,p is the so-called energy error, N’ is the number of points of the discrete record ag,s;r(ti) in the stationary 
interval T , i.e. T =N’∆t, and the subindex p indicates the percentage of energy released by the earthquake in the 
stationary interval. The quality of the fitting will improve as the value of εH,p decreases, although small values of 
the error parameter can indicate that the process is almost stationary, as some fluctuations in the Husid function 
must be expected due to the randomness of a stochastic process. 
 
 
4. IMPLEMENTATION OF THE USP METHOD 
 
The application of the USP method to multi-peaked accelerograms follows the same procedure proposed by 
Ferrer and Sánchez-Carratalá (2006) for single-peak records. Obviously, some slight modifications and additions 
to the method must be made to take into account the complexity of the accelerogram. The multimodal intensity 
functions considered in this paper are composed by several Increasing-Peak-Decreasing (IPD) intensity functions 
(see Sánchez-Carratalá and Ferrer, 2004), since this would be the usual choice for fitting multi-peaked 
accelerograms, although ICD (Increasing-Constant-Decreasing) functions, or a mixture of both types, could also 
be used in general. 
 
4.1. Previous operations 
 
To apply the USP method, only the most significant part of the accelerogram ag(t) is considered. A windowed 
accelerogram ranging from t1 to t2 is obtained using the same procedure as in the case of unimodal functions (see 
Ferrer and Sánchez-Carratalá, 2006). In this paper, ηa=0.05 and ηb=0.01. 
 
The number of modes, M, is estimated using the available seismic information or from a rational analysis of the 
accelerogram, so that the duration of each mode can be approximated as )0(

m,1
)0(
m,2

)0(
m ttT −= , where )0(

m,1t  and )0(
m,2t , 

m=1,2,…,M, are the first guesses of, respectively, the initial and final instants of the mth mode, with )0(
m,2

)0(
1m,1 tt =+ , 

m=1,2,…,M-1. The Husid function is then discretized with a constant relative increment ∆h calculated with 
respect to its final value, Hag(t2), so that the duration of each mode can be more accurately computed by searching 
the instants )1(

m,2t  near )0(
m,2t , m=1,2,…,M-1, in which the discretized Husid function changes its curvature from 

convex to concave. A good choice is ∆h∈[0.01,0.02]. From now on, the intensity function of each mode is 
calculated by independently applying the USP method to each portion of the accelerogram defined by )1(

m,1t  and 
)1(
m,2t , m=1,2,…,M, with duration )1(

m,1
)1(
m,2

)1(
m ttT −= . 

 
4.2. Solution of the least squares equation 
 
A smoothing process is carried out for each mode of the accelerogram, as in the case of unimodal intensity 
functions. This process produces a smoothed windowed record ag;sw,m(t) for each mode. In this paper, 
τa,m=( )1(

m,1mmax, tt − )/20 is used for the width of the smoothing moving average window, where tmax,m is the instant 
corresponding to the peak ground acceleration of the mth mode. Since the method to solve the equation system is 
iterative, an initial guess of the intensity function, )0(

m,agI , has to be given to start the solving process. The 
procedure is the same as for unimodal functions, but with the following differences: the initial time of the 
intensity function, t0,m, is calculated as t0,m=tr,m-c4

)1(
mT  (except for the first mode, where t0,m, m=1, is defined as in 

the unimodal case), being tr,m the rise time of the intensity function corresponding to the mth mode; and the 
decreasing part of the function is forced through a point located at the instant t5,m=t2,m (except for the last mode, 
where t5,m, m=M, is obtained as in the unimodal case; see Ferrer and Sánchez-Carratalá, 2006). In this paper, 
c4=0.15 is used. 
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Once )0(

m,agI  has been determined, the Gauss-Newton iterative method can be applied to solve the non-linear 

equation system, and a solution )1(
m,agI  is found. 

 
4.3. Improvement of the fitting 
 
In this step, the iterative algorithm defined by Ferrer and Sánchez-Carratalá (2006) is applied to each intensity 
function )1(

m,agI . However, a new condition must be introduced to guarantee the convergence of the iterative 

process, as some of the intensity functions )1(
m,agI , m=1,2,…,M, could be badly conditioned due to the probably 

higher levels of the accelerogram at intermediate times )1(
m,2t , m=1,2,…,M-1. The condition consists of checking 

if the rise time of mth mode in the kth iteration, )k(
m,rt , is inside the interval [ m,q;ght5

)1(
m,r Tct ± ], where Tght;q,m is the 

total threshold duration of the mth mode (also called fractional or normalized duration) corresponding to a relative 
threshold level q=η/ag;max,m, where ag;max,m is the peak ground acceleration of the mth mode of ag(t) (see 
Sánchez-Carratalá and Ferrer, 2004). In this paper, c5=0.05 and q=0.05 are used. 
 
Once the iterative process has finished, *)K(

m,agI  is taken as the intensity function of the mth mode of the 
accelerogram, being K* the last iteration performed, or the iteration with the smallest stationarity error (for the 
definition of stationarity error, see Ferrer and Sánchez-Carratalá, 2006). 
 
4.4. Composition of unimodal intensity functions 
 
Steps 4.2 and 4.3 can be applied separately to all modes of the accelerogram, so that the different intensity 
functions Iag,m(t), m=1,2,…,M, are calculated. The intensity function of the complete accelerogram, Iag(t), is a 
piece-wise function obtained as the composition of the modal intensity functions Iag,m(t) between their 
intersection points, with the duration of each mode eventually defined as )2(

m,1
)2(
m,2

)2(
m ttT −= , m=1,2,…,M, where 

)2(
m,1t  and )2(

m,2t  are the ultimate approach of, respectively, the initial and final instants of the mth mode, with 
)2(
m,2

)2(
1m,1 tt =+ , m=1,2,…,M-1. 

 
The goodness of the fitting is now evaluated using the energy error, εH,p. This error parameter is computed for 
each mode by applying Eqn. 3.3. The stationary interval of each mode, mT , is determined symmetrically from 
the Husid function of each mode, Hag,m(t), in such a way that mT =tb,m-ta,m, where Hag,m(ta,m)=(1-p)/2 and 
Hag,m(tb,m)=(1+p)/2. Finally, the error parameter in the whole record is computed as follows: 
 

 ∑
=

ε=ε
M

1m
mm,p,Hp,H P  (4.1) 

 
where εH,p,m, m=1,2,…,M, is the energy error of the mth mode, and Pm, m=1,2,…,M, is the percentage of the total 
energy of the earthquake released during the mth mode. 
 
 
5. NUMERICAL APPLICATION 
 
In this paper, two corrected accelerograms provided by the European Strong-Motion Data project (ISESD, 2006) 
are used: the Campano-Lucano earthquake (Italy) of November 23, 1980 (Mw=6.9), and the Izmit-Kocaeli 
earthquake (Turkey) of August 17, 1999 (Mw=7.6). According to the remarks accompanying the downloaded 
records, the processing procedures applied are: linear baseline correction of acceleration and velocities, and an 8th 
order elliptical band-pass filter (0.25-25.00 Hz). 
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The IPD functions fitted to obtain the multimodal intensity function of each earthquake record are: the 
exponential-exponential function of Shinozuka and Sato (1967) for the Italian earthquake, and the 
potential-exponential function of Saragoni and Hart (1974) for the Turkish earthquake. 
 
5.1. Campano-Lucano earthquake 
 
The accelerogram corresponds to the NS component recorded in the Sturno station at 23 km from the epicenter, 
with sampling time interval ∆t=0.01 s, and peak ground acceleration ag;max=2.12 m/s2 (0.22g). According to 
Section 4.1, the duration of the windowed record, ag;w(t), is 69.42 s. The accelerogram has been divided into two 
modes using ∆h=0.01, with )1(

1,1t =0, )1(
2,1

)1(
1,2 tt = =39.87 s, and )1(

2,2t =69.42 s. 
 
The IPD Shinozuka-Sato (SS) intensity function has the following expression: 
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where KSS, a, b and t0 are the parameters of the intensity function, and Tgt is the duration of the fitted portion of 
the accelerogram. 
 
The least squares method is applied to the initial guess of the intensity function for each mode with the additional 
restraint b≤2.50, which is introduced to avoid a small rise time (tr/Tgt≥0.05). By applying the iterative algorithm 
of Section 4.3, the final estimate of the intensity function for each mode is obtained; the parameters are: for the 
first mode )3(

1,agI , KSS,1=9476.5, a1=0.1902, b1=0.1903, and t0,1=0.97 s; and for the second mode )3(
2,agI , 

KSS,2=3677.3, a2=0.3537, b2=0.3538, and t0,2=41.78 s. 
 
In accordance with Section 4.4, the intersection point between the two modes occurs at the instant 

)2(
2,1

)2(
1,2 tt = =41.82 s. The fitted multimodal intensity function is shown in the left part of Fig. 1, along with the 

windowed record, ag;w(t); the discontinuous line indicates the intersection between both unimodal intensity 
functions. The energy error for each mode has been calculated as stated in Section 3, obtaining the following 
values: εH,85,1=0.1736 for the first mode, and εH,85,2=0.0834 for the second mode. By applying Eqn. 4.1 
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Figure 1. Left: Campano-Lucano earthquake record, and final fitting of the bimodal Shinozuka-Sato intensity 
function. Right: Comparison between the Husid function of the reliable underlying stationary record and the 

mean value of the Husid function of a stationary process of unit variance, for each mode. 
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εH,85=0.1683 is obtained for the complete accelerogram. In the right part of Fig. 1 the Husid function of the 
reliable underlying stationary record of each mode, ag,s;r,m(t), is represented, along with the expected Husid 
function; the discontinuous lines indicate the stationary intervals corresponding to the 80, 85, and 90% energy 
levels for each mode. 
 
5.2. Izmit-Kocaeli earthquake 
 
The accelerogram corresponds to the EW component recorded in the Izmit-Meteoroloji Istasyonu station at 9 km 
from the epicenter, with sampling time interval ∆t=0.01 s, and peak ground acceleration ag;max=2.19 m/s2 (0.22g). 
According to Section 4.1., the duration of the windowed record, ag;w(t), is 51.65 s. The accelerogram has been 
divided into two modes using ∆h=0.01, with )1(

1,1t =0, )1(
2,1

)1(
1,2 tt = =31.10 s, and )1(

2,2t =51,65 s. 
 
The IPD Saragoni-Hart (SH) intensity function has the following expression: 
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where KSH, a, m and t0 are the parameters of the intensity function, and Tgt is the duration of the fitted portion of 
the accelerogram. 
 
The least squares method is applied to the initial guess of the intensity function for each mode with the additional 
restraint 0.185≤m≤2.70, which is introduced to avoid a small or large rise time (0.05≤tr/Tgt≤0.30). By applying 
the iterative algorithm of Section 4.3, the final estimate of the intensity function for each mode is obtained; the 
parameters are: for the first mode )3(

1,agI , KSH,1=0.4331, a1=0.1943, m1=0.9317, and t0,1=0 s; and for the second 

mode )1(
2,agI , KSH,2=0.7071, a2=1.1118, m2=2.7000, and t0,2=33.83 s. 

 
In accordance with Section 4.4, the intersection point between the two modes occurs at the instant 
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1,2 tt = =34.10 s. The fitted multimodal intensity function is shown in the left part of Fig. 2, along with the 

windowed record, ag;w(t); the discontinuous line indicates the intersection between both unimodal intensity 
functions. The energy error for each mode has been calculated as stated in Section 3, obtaining the following 
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Figure 2. Left: Izmit-Kocaeli earthquake record, and final fitting of the bimodal Saragoni-Hart intensity function. 
Right: Comparison between the Husid function of the reliable underlying stationary record and the mean value of 

the Husid function of a stationary process of unit variance, for each mode. 
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values: εH,85,1=0.0944 for the first mode, and εH,85,2=0.1873 for the second mode. By applying Eqn. 4.1 
εH,85=0.1064 is obtained for the complete accelerogram. In the right part of Fig. 2 the Husid function of the 
reliable underlying stationary record of each mode, ag,s;r,m(t), is represented, along with the expected Husid 
function; the discontinuous lines indicate the stationary intervals corresponding to the 80, 85, and 90% energy 
levels for each mode. 
 
 
6. CONCLUSIONS 
 
The USP fitting method has been successfully extended to the case of complex accelerograms, i.e. seismic 
records with different strong motion parts, by fitting multimodal intensity functions composed of several 
unimodal IPD functions. The procedure consists of identifying the modes of the accelerogram, fitting a 
prescribed intensity function to each mode using the USP method, and, finally, joining all the unimodal functions 
with the condition that the intensity function of the whole accelerogram is continuous. The procedure has shown 
an overall good performance in numerical applications, so that the robustness, reliability, and precision of the 
USP method for the fitting of multimodal intensity functions to complex accelerograms have been evidenced. 
 
 
REFERENCES 
 
Cakmak, A.S., Sherif, R.I. and Ellis, G. (1985). Modelling earthquake ground motions in California using 
parametric time series methods. International Journal of Soil Dynamics and Earthquake Engineering, 4:3, 
124-131. 
Ferrer, I. and Sánchez-Carratalá, C.R. (2006). A robust method to obtain the amplitude modulation function of a 
strong motion record. Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, 
Geneva, Switzerland, Paper 1445, 10 pp. 
Ferrer, I. and Sánchez-Carratalá, C.R. (2007). Estimación robusta de funciones de intensidad a partir de registros 
sísmicos reales. Actas 3er Congreso Nacional de Ingeniería Sísmica, Gerona, Spain, Paper 91, 15 pp (in Spanish). 
Husid, R., Medina, H. and Ríos, J. (1969). Análisis de terremotos norteamericanos y japoneses. Revista del 
Centro de Investigación, Desarrollo e Innovación de Estructuras y Materiales (IDIEM), 8:1 (in Spanish). 
ISESD (2006). Internet Site of the European Strong-Motion Data Project. http://www.isesd.cv.ic.ac.uk, accessed 
on April, 2006. 
Jennings, P.C., Housner, G.W. and Tsai, N.C. (1968). Simulated earthquake motions. Report of the Earthquake 
Engineering Research Laboratory, California Institute of Technology, Pasadena, CA. 
Ólafsson, S. (1992). The use of ARMA models in strong motion modelling. Proceedings of the 10th World 
Conference on Earthquake Engineering, Madrid, Spain, 2, 857-862. 
Priestley, M.B. (1965). Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical 
Society, Series B, 27, 204-237. 
Sánchez-Carratalá, C.R. and Ferrer, I. (2004). Equivalent earthquake duration from amplitude modulation 
functions. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper 
2302, 15 pp. 
Saragoni, G.R. and Hart, C. (1974). Simulation of artificial earthquakes. Earthquake Engineering and Structural 
Dynamics, 2:3, 249-267. 
Shinozuka, M., and Sato, Y. (1967). Simulation of nonstationary random process. Journal of the Engineering 
Mechanics Division, 93:EM1, 11-40. 
Spanos, P.D. and Failla, G. (2004). Evolutionary spectra estimation using wavelets. Journal of Engineering 
Mechanics, 130:8, 952-960. 
Tung, A.T.Y., Wang, J.N., Kiremidjian, A. and Kavazanjian, E. (1992). Statistical parameters of AM and PSD 
functions for the generation of site-specific strong ground motions. Proceedings of the 10th World Conference on 
Earthquake Engineering, Madrid, Spain, 2, 867-872. 
UNE-ENV 1998-2 (1998). Eurocode 8: Design provisions for earthquake resistance of structures – Part 2: 
Bridges. AENOR, Spanish official version of ENV 1998-2:1994. 


