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ABSTRACT : 

The application of a linear multivariate Bayesian regression model to compute pseudoacceleration (SA)
attenuation relationships is presented. The model is able to include the correlation between observations for a
given earthquake, the correlation between SA ordinates of different periods and the correlation between 
coefficients of the regression model. Through comparisons between results obtained with the least-squares 
method and the one-stage maximum-likelihood method, the advantages of the Bayesian model are discussed. 
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1. INTRODUCTION 
 
In the past, empirical attenuation relationships of SA were fit to available data trough the least squares method. 
Several authors observed that in some cases the attenuation of SA with distance could not be correctly 
determined with this method since it disregarded the correlation between observations recorded at different sites
for a given earthquake (Campbell 1981 and Joyner and Boore). Indeed, the two-stage regression method and the 
one-stage maximum likelihood methods were developed to solve this problem (Joyner and Boore 1993). 
 
Also, attenuation relationships have been derived through univariate Bayesian analysis (Veneziano and Heidari
1985, Ordaz et al. 1994 and Reyes 1999). Ordaz et al. (1994) discussed the advantages of the Bayesian analysis 
with respect to the least squares method. The results that we present in this paper can be considered an
extension of the original work of Ordaz et al. (1994), since we also used a Bayesian approach. Nevertheless, 
our model is more general and is able to include the correlation between observations recorded at different sites
for a given earthquake, the correlation between SA ordinates at different periods, and the correlation between 
regression coefficients. 
 
In this paper we briefly compare the results obtained with results obtained with the least-squares and the 
one-stage maximum likelihood methods. For the comparisons we use as benchmark a set of synthetic SA
spectra with predefined statistical parameters. 
 
In order to fulfill the length requirements of the conference we have only included some basic findings of 
several results that we have obtained with the Bayesian model presented. Other issues such as convergence of
the Gibbs sampling method, a sound discussion on how the prior information should be defined when working 
with actual ground motions, differences between multivariate and univariate analysis and their possible 
implications on the estimation of seismic parameters through attenuation relationships will be presented in two 
manuscripts which are in preparation for a specialized journal. 
 
2. THE REGRESSION MODEL 
 
For a given T, the standard shape shown in equation (1) was adopted as attenuation model for regression
analysis. 
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Where T stands for structural period, y is the natural logarithm of SA(T), Mw is the moment magnitude, R is 
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some measure of the distance to the fault area and αi (T) are the coefficients determined by regression analysis. 
Although in this paper we have used the function shown in equation (2.1) as attenuation model, the procedure 
presented can be readily applied to other linear forms of attenuation relationships. 
 
The multivariate regression model considered is EXY T += α , where symbol T stands for transpose, Y is a 
known no x nT matrix which includes no observations of y(T) for the nT periods considered, X is a known no x np
matrix which is composed by the no observations of the np parameters considered in the model (note that 
according to equation (2.1) the elements of the first column of the matrix X are equal to unity), α is a unknown 
nT x np matrix which comprises the coefficients determined by regression analysis (each row of α contains the 
αi(T) coefficients for a given T) and E is a unknown no x nT matrix which is comprised by the regression 
residuals. 
 
It is assumed that the elements E are correlated, normally distributed random variables with zero mean. The
correlation between elements of E is defined through an unknown no nT x no nT matrix Σ⊗Φ=Ω , where Φ is 
an unknown no x no matrix which accounts for the correlation between the rows of Y, Σ is an unknown nT x nT

matrix which accounts for the correlation between spectral ordinates, and the symbol ⊗  stands for Kronecker 
product. 
 
3. THE ONE-STAGE MAXIMUM LIKELIHOOD METHOD 
 
For the model described in last section, the likelihood of Y is defined in equation (3.1), where Tr denotes trace 
and the symbol ∝  stands for proportionality, since we have omitted the normalization constant. 
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Following Joyner and Boore (1993) we considered that the elements of E, say εij, can be expressed as the sum 
of earthquake-to-earthquake variability (εe) and record-to-record variability (εr). In addition, the following 
considerations were made: 
 

1) For a given earthquake and a given site, the coefficient of correlation between residuals for two 
different periods, say T1 and T2, is equal to 

21 ,TTρ  
2) For a given earthquake the coefficient of correlation between residuals for the same period at different

sites is equal to γe. 
3) For a given earthquake the coefficient of correlation between residuals for two different periods, say T1

and T2, at different sites is equal to γe
21 ,TTρ . 

4) Residuals related to different earthquakes are independent. 
 
According to these assumptions Φ is a block diagonal matrix defined in (3.2) where ne is the number of 
earthquakes considered, and the squared submatrix φi related to earthquake i is defined in (3.3). The size of φi is 
the number of records of the earthquake i. Note that γe is equal to parameter γ in Joyner and Boore (1993) while 

21 ,TTρ  is the coefficient of correlation between spectral ordinates SA(T) for a given pair of periods, namely T1

and T2. In summary, the same structure of matrix Φ used by Joyner and Boore (1993) for the univariate case 
was used in the multivariate case. 
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For a given γe the values of α and Σ which maximize the likelihood are the well known weighted least squares
estimators defined by equations (3.4) and (3.5). 
 

( ) YXXX TT 111ˆ −−− ΦΦ=α          (3.4) 
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        (3.5) 

 
In the maximum likelihood method, the value of γe which maximizes the likelihood is found iteratively and the
values of α and Σ for the regression analysis are the values related to the γe of maximum likelihood. 
 
4. THE BAYESIAN MODEL 
 
In the Bayesian approach α, Σ and Φ are regarded as matrix random variables with known joint prior density
p(α, Σ, Φ) . This prior density is updated through Bayes’ theorem and hence the posterior density is given by 
the product between the likelihood and the prior density. 
 
In standard Bayesian analysis, three types of p(α,Σ, Φ) are commonly used: vague densities, conjugate densities 
and generalized conjugate densities. Vague densities are used when prior knowledge about parameters is 
diffuse, while conjugate and generalized conjugate densities are used when prior information about parameters
is available. A more detailed description of each family of probability density functions and their implications 
in the regression analysis can be found elsewhere (see for example, Broemeling 1985, Rowe 2002). 
 
In this paper we adopted a generalized conjugate probability density function as basic density. However, in
order to keep the structure of Φ shown in equation (3.2) we used a scalar beta density for γe, thus the prior 
density of Φ is not of standard form. These densities were chosen since we found that they were suitable to
properly include our prior knowledge of the parameters in the regression analysis. 
 
The prior joint probability density used is given by ( ) ( ) ( ) ( )ΦΣ=ΦΣ pppp VV αα ,, , where αV= vec(α). 
Following Rowe (2002), we assume that the prior density of αV is the Normal density defined in equation (4.1) 
with mean αV0 and covariance matrix Δ. Thus, αV0=vec(α0) where α0 is the prior expected value of α and the 
positive nT nP x nT nP matrix Δ is the prior covariance matrix of αV0. 
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For Σ we used as prior density the inverted Wishart density (Rowe 2002) shown in equation (4.2) with 
parameters ν and Q. 
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       (4.2) 

 
The positive nT x nT matrix Q can be computed from the prior expected value of Σ as it is shown in equation 
(4.3): 
 

( ) 022 Σ−−= TnQ ν          (4.3) 
 
where Σ0 is the prior expected value of Σ. Note that Q also depends on the scalar ν, which is a measure of our 
degree of certainty on Σ0. In order to give a finite value to the variance of the elements of Σ the value of ν
should be greater than (2nT+4); the larger the value of ν, the greater the degree of certainty on Σ0. 
 
In Bayesian analysis usually an inverted Wishart density is also used for Φ (Rowe 2002). Nevertheless, if it is 
desired that Φ has the structure shown in equation (3.2) the inverted Wishart density cannot be used. We note 
that, for a given set of data, Φ is only a function of γe, hence we decided to use a scalar beta density for γe
according to equation (4.4). 
 

( ) ( ) 11 1 −− −∝ b
e

a
eep γγγ          (4.4) 

 
where parameters a and b can be computed from the prior expected value of γe and its prior standard deviation. 
 
In summary, the prior information about regression parameters is included in the analysis through αV0, Δ, Q, v, a and 
b, which are known as hyperparameters, and equations (4.1) to (4.4). 
 
Multiplying the prior joint density function by the likelihood function we obtain the posterior joint density of the 
regression parameters: 
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This joint density should be marginalized in order to obtain the posterior marginal expected values of α, Σ and 
γe. However, for this density, it is not possible to obtain marginal distributions in an analytical closed form.
Nevertheless, marginal expected values can be numerically computed through the stochastic integration method
known as Gibbs sampling. 
 
5. SYNTHETIC DATA 
 
In order to assess the performance of the least-squares method, the one-stage maximum likelihood method and 
the Bayesian method we generated different sets of synthetic SA(T) spectra with predefined statistical 
properties. We considered 25 structural periods (T) ranging between 0 and 5.0 seconds. 
 
We generated 6 sets of synthetic spectra assuming the number of earthquakes shown in table 1. It was
considered that the moment magnitude (Mw) of the events follows a modified Gutenberg-Richter distribution, 
with minimum value of Mw=6, maximum value of Mw=8.2 and β=2.0 
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Also, we considered that each earthquake was recorded at the number of sites shown in table 1. We assume that
R followed a uniform distribution between 250 and 400 Km. Hence, the number of records for a given set is the 
product between the number of earthquakes and the number of sites. 
 

Table 1 Synthetic sets of SA(T) spectra used 
Set Earthquakes Sites no Set Earthquakes Sites no 
1 3 4 12 4 20 10 200 
2 5 10 50 5 50 10 500 
3 10 10 100 6 100 10 1000 

 
The predefined statistical properties of the set of ground motions were αp, Σp and Φp. We set αp as the value of 
the attenuation model proposed by Reyes (1999) for the CU station of Mexico City. 
 
The diagonal terms of Σp were set as the variance of the residuals (σ2) related to the Reyes (1999) model, while 
the off-diagonal terms were computed through the equation proposed by Baker and Cornell (2006) to estimate
the coefficient of correlation

21 ,TTρ . For Φp we used the structure shown in equation (3.2) with γe=0.2234 which 
is a value that we infer from the results presented by Joyner and Boore (1993). 
 
Thus, given the number of earthquakes and the number of records shown in table 1, a nox nT matrix random 
variate from the matrix normal distribution was generated. The mean value of the distribution was computed
with αp with a matrix covariance defined by Φp ⊗ Σp. Note that regardless of the set considered, αp, Σp and Φp

represent the statistical properties of the entire population of SA(T) spectra; hence these parameters were used 
as benchmarks for the regression analysis presented in the following sections. 
 
6. RESULTS FOR ONE-STAGE MAXIMUM LIKELIHOOD METHOD 
 
Figure 1 shows a comparison between regression parameters obtained with the one-stage maximum-likelihood 
method and the benchmarks. Although not shown, the results were very similar to those observed for the least 
squares method. In general, the one-stage maximum likelihood method is not able to attain the benchmark
values, except for α2(T) and σ. 
 
7. RESULTS FOR THE BAYESIAN METHOD 
7.1 Prior Information 
 
The elements of matrix α0 were set as follows. With the amplitude Fourier spectra defined by the Brune’s
model and using random vibration theory, we obtained SA spectra related to several values of Mw and R 
(McGuire and Hanks 1980). Then, we applied the least squares method to compute the value of α0. This implies 
that a priori we believe that the attenuation of SA spectra could be properly characterized by the Brune’s model.
 
Since the terms α1 and α5 in equation (2.1) depend on site effects (Ordaz et al. 1994) we assigned to their 
variance a large value with respect to their prior expected value. This implies that α1(T) and α5(T) could attain 
any value which yields the best fit in the regression analysis. In the case of α2, α3 and α4 we assigned to their 
covariance a value that implies a coefficient of variation of 1.7, as it was used in a previous study (Ordaz et al.
1994). 
 
We set the diagonal elements of Σ0 equal to 0.49, which means that a priori we believe that the standard 
deviation of the residuals is equal to 0.7 independently from T. In addition, the off-diagonal terms were defined 
through the coefficient of correlation shown in equation (7.1): 
 

( )21
0

, exp
21

TTqTT −−=ρ         (7.1) 
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According to equation (7.1) the coefficient correlation varies from unity when periods are equal to nearly 0.05
when the difference between periods is about 3 seconds and for q=1.0. It must be acknowledged that equation 
(7.1) is quite arbitrary. This correlation structure was created only for the synthetic example presented in this
paper. When working with actual ground motions it could be more reasonable to use the correlation coefficients
defined by Baker and Cornell (2006) as prior values. In the example presented in this paper we decided not to 
use the equations of Baker and Cornell (2006) as prior information since they were used to generate the
synthetic data. 
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Figure 1 Results for maximum likelihood method (Symbols: black circles no=12, white circles no=50, black 

triangles no=100, white triangles no=200, black squares no=500, white squares no=1000 and thick line 
benchmark) 

 
The degree of certainty of Σ0 depends on parameter ν; as it has been discussed, the larger the value of ν, the 
larger the degree of certainty on Σ0. The posterior value of Σ can be expressed as a weighted average between 
prior information and the conditional weighted least squares estimate. The weighting factors are ν/(n+ν) for the 
prior information and n/(n+ν) for the conditional weighted least squares estimate. In the computations we have 
used a value equal to 57 (the minimum required for nT=25 in order to give a finite value to the covariance of 
Σ0). It means that we believe that Σ0 is uncertain. 
 
Finally, our prior information of γe is vague, so we have set a=b=1.5, which is a very flat density, with expected 
value of 0.5, in order to force γe to take the value which yields the best fit to data. 
 
7.2 Results 
 
The results obtained with the Bayesian model are presented in figure 2. Conversely to what happened with the 
other models, the Bayesian was able to attain benchmark values, except for parameter α3(T). Note that with no
between 100 and 200 very accurate estimates of the regression parameters are observed. Although not shown,
small values of standard deviations are observed in the Bayesian model, which is an advantage over the other
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methods, since scatters of the Bayesian regression parameters are smaller than those observed with other
methods. 
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Figure 2 Results for Bayesian method (Symbols: black circles no=12, white circles no=50, black triangles no=100, 

white triangles no=200, black squares no=500, white squares no=1000 and thick line benchmark) 
 
We noted that the information contained in data was not enough to completely define parameter α3(T); in other 
words, parameter α3(T) has little effect on y and almost any value could have been used. Hence, the Bayesian
method, instead of leading to any value of α3(T) (such as the other methods) leads to values of α3(T) that are 
close to its prior value. 
 
Also, it was observed that accurate estimates of γe were obtained for no greater than 50. In spite of our use of a 
prior value of γe=0.5 the data shifted the prior value to the correct value of γe. On the other hand, to obtain 
accurate estimates of γe values of no greater than 200 were required for the one-stage maximum likelihood 
method. 
 
8. DISCUSSION AND CONCLUSIONS 
 
We noted that while values of M and R lie in the ranges observed in the sample, results for the three methods 
yield the same level of accuracy, even when some coefficients seem theoretically unacceptable. However, we
decided to compare the predicted SA spectra, obtained with coefficients associated to no=200 and different 
regression methods, with the corresponding benchmark spectra. We choose M=7 and four different values of R: 
200 and 500 Km. These values are out of the range of data contained in the synthetic set; thus, this comparison
can be regarded as an evaluation of the possibility of extrapolating the results from the regression analysis. The 
results are summarized in figure 3. As can be observed, only the Bayesian regression yields acceptable results.
On the other hand, the least squares and maximum likelihood methods might lead to very inaccurate results. 
Note that for R=200, large differences are observed for the least-squares and maximum-likelihood methods, in 
spite of the fact that this distance is only 20% lower than the minimum value of R included in the synthetic set. 
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We have presented a linear multivariate Bayesian regression method which includes the correlation between
observations for a given earthquake, the correlation between SA ordinates at different periods, and the 
correlation between coefficients of the regression model. 
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Figure 3 Comparison between SA spectra obtained through different methods. (Symbols: black circles least squares 

method, white circles maximum likelihood method, black triangles Bayesian method and thick line benchmark 
value) 

 
Through comparisons between results obtained with the least squares and the maximum likelihood methods we
have shown than multiple solutions close to minimum error could exist and that the Bayesian method could be
used to obtain regression parameters consistent with seismological theory. In addition, for the synthetic example 
presented, it is shown that attenuation relationships obtained through Bayesian analysis yield more accurate
results than other methods when attenuation relationships are extrapolated. However, the Bayesian method
requires significantly more analytical and computational work than traditional methods. 
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