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ABSTRACT:

The analysis of seismic wave propagation and amplificatiocomplex geological structures raises the need for
efficient and accurate numerical methods. The solution @fetastodynamic equations using boundary element
methods (BEMS) gives rise to fully-populated matrix equiasi. Earlier investigations on the elastodynamic equa-
tions have established that the Fast Multipole (FM) metleatilices the complexity of a BEM solution 20log N

per GMRES iteration. The present Article addresses thensixie of the FM-BEM strategy to 3D multi-domain
elastodynamics in the frequency domain. Using this FMacated BEM it is how possible to study the prop-
agation of seismic waves in 3-D alluvial basins at a much fogast than with standard BEM. Validations are
performed for canonical basins and comparisons to previcaks are proposed. It shows the efficiency and
accuracy of the fast BEM formulation proposed.
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1 INTRODUCTION

Seismic site effects are a major concern for earthquakeneagng because very large local amplifications of seis-
mic motions may occur. Such phenomena can strengthen ttaesground motion and increase the consequences
on structures and buildings. To analyze site effects, ibssfble to consider modal approaches or directly investi-
gate wave propagation phenomena. The importance of 2D argin3ations is well recognized throughout the
literature. A lot of studies have been devoted to the 2D case 3D case is currently a very attractive field of
research because of the increase of the speed and caeslifitomputers. To compute seismic wave propagation
in alluvial basins, various numerical methods have beepgsed: the series expansions, the multipolar expansions
of wave functions, the finite element method, the finite défeces, the spectral elements method, the boundary
element method [BEM, see e.g. Bonnet, 1999, Dangla et &5]20"he main advantage of the latter is that only
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the domain boundaries (and possibly interfaces) are dizedk leading to a reduction of the number of degrees
of freedom (DOFs). However, the standard BEM leads to fpthpulated, non-symmetric matrices. This entails
high computational costs, both in CPU tim@((V?) per iteration using an iterative solver such as GMRES) and
memory requirement)(N?)), whereN denotes the number of DOFs of the BEM model.

In other research areas where the BEM is used (electromagnedcoustics,. . .), considerable speedup of solu-
tion time and decrease of memory requirements has beervadhiever the last decade, through the develop-
ment of the Fast Multipole Method (FMM) [Nishimura, 2002]hi$ method is known to reduce the CPU time to
O(N log, N) per iteration. So far, very few studies have been devoteded-MM in elastodynamics (see, how-
ever, [Fujiwara, 2000] for the frequency-domain case amtkdihashi et al., 2003] for the time-domain case). The
present article improves on the methodology of [FujiwafQ® by incorporating recent advances of FMM imple-
mentations for Maxwell equations (e.g. [Darve, 2000]), athallow to run BEM models of much larger size.This
paper is organized as follows. First, the main featuresefthstodynamic FMM-BEM formulation are concisely
presented. Then, numerical efficiency and accuracy arsses®n numerical results obtained for problems with
well-known solutions. Finally, the efficiency of the pres&MM-BEM is demonstrated on seismology-oriented
examples.

2 STANDARD AND FAST MULTIPOLE ACCELERATED BOUNDARY ELE-
MENT METHOD

2.1 Single-region boundary element method

Let 2 denote a region of space occupied by an isotropic elastit clodracterized by, (shear modulus), (Pois-
son’s ratio) ang (mass density). Assuming a time-harmonic motion with dacérequencyw, the displacement
can be written:

u(x,t) = a(z,w)e™ (2.1)

In the following, the factore™! is systematically omitted and the notatians used instead of. Assuming the
absence of body forces, the displacemens given at an interior point € 2 by the well-known representation
formula:

up() = /a WU @ 3:) — )T (@, 1)) 05, (2.2)

wheret is the traction vector on the boundady?, andU¥ (x,y;w) andTF(x, y;w) denote the-th components
of the elastodynamic fundamental solution, i.e. of theldisgment and traction, respectively, generateg atR?
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by a unit point force applied at ¢ R? along the directiork [Eringen and Suhubi, 1975]:

Ut @ 5) = g (st~ ) 55 Glly = alsks 4Gy — al ).
TF(x,y;w) = u[lf—yzyaija,d + 8ikdj0 + 0040 %U,’f(m,y;w)nj(y), (2.3)
in which G(r; k), defined by .
G(rik) = % (2.4)

is the free-space Green’s function for the Helmholtz eguatvith wavenumbek,, corresponding to eithe? or .S
elastic waves, angl(y) is the unit normal t@2 directed outwards df2.

Whenx € 012, a singularity occurs ay = x. With the help of a well-documented limiting process, thiedgnal
representation (2.2) yields the integral equationafa 052 :

cir(@)ui(@) = /a @U@ y:w)dSy = (PV) | w)T (@, y;w)ds, (2.5)
where (P.V.) indicates a Cauchy principal value (CPV) siagintegral and théree-term ¢, () is equal t00.5d;
in the usual case whe#? is smooth atc. Equation (2.5) may be recast into alternative, equivalegularized
forms which are free of CPV integrals [Dangla et al., 2005].

The numerical solution of boundary integral equation (&s%)ased on a boundary element (BE) discretization of
the surface)2 and boundary tracegs:, t), leading to the system:

[Hl{u} + [G]{t} =0, (2.6)

where[H] and[G] are fully populated, nonsymmetric, matrices and vecfars {¢} gather the displacement and
traction degrees of freedom (DOFs). In this work, lineae#hnoded triangular boundary elements are used, to-
gether with a piecewise-linear continuous (i.e. isopatan)anterpolation for the displacements and a piecewise-
constant interpolation of tractions. Upon introductionboindary conditions, the matrix equation (2.6) is recast
in the form:

[K{v} = {f}, (2.7)

where theN-vector {v} collects the sought degrees of freedom (DOFs), whileXhe N matrix of influence
coefficients K] contains the columns ¢f/] and[G] associated with the unknown components.

BEM matrix equations such as (2.7) are here solved itetgtv'@ng the GMRES algorithm. The influence matrix
[K] is fully-populated. With reference to (2.7), each GMRE&t®n requires one evaluation [d’]{«} for given
{u}, a task requiring a computing time of orde{ N?) if either [K] is stored orfK]{u} is evaluated by means
of standard BEM numerical integration procedures. Thi&/?) complexity, unacceptable for large BEM models,
can be lowered by resorting to fast BEM solutions technicuesh as the Fast Multipole Method (FMM).
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2.2 Fast Multipole Method: principle

The goal of the FMM is to speed up the matrix-vector produchgatation required for each iteration of the
iterative solver applied to the BEM-discretized equatidvisreover, the governing BEM matrix is never explicitly
formed, which leads to a storage requirement well below(h&?) memory required for holding it. Substantial
savings in both CPU time and memory are thus achieved.

In general terms, the FMM exploits a reformulation of thedamental solutions in terms of products of functions
of  and ofy, so that (in contrast with the traditional BEM) integrasowith respect tgy can be reused when the
collocation pointe is changed. On decomposing the position vegter y—x intor = (y — yo)+7ro—(x — xo),
wherexzy andyg are two poles andg = yo — x¢ and invoking the Gegenbauer addition theorem, the Helmholt
Green’s function is written as [Darve, 2000]:

G(r|, k) = lim R YY) G (3 1g; k)e RS (@—20) g5 (2.8)

L—+too Jaes

wheres is the unit sphere dk? and thetransfer function Gy, (3; ro; k) is defined in terms of the Legendre polyno-
mials P, and the spherical Hankel functions of the first kg by:

. k . .
GrL(8;m05 k) = ﬁ Z (2p + 1)2ph§,1)(k]r0\)Pp(cos(s,7"0)) (2.9)
0<p<L

Then, the elastodynamic fundamental solution (2.3) idyeasen to admit representations of the form (2.8) with
G, replaced with suitably-defined (tensorial) transfer fiord [Chaillat et al., 2008].

A 3D cubic grid of linear spacing embedding the whole bounda#f? is then introduced. The FMM basically
consists of using decomposition (2.8), with the patgsandyg being chosen as the cell centers, whenavand

y belong tonon-adjacent cubic cells. The treatment of such "FM" contributions exglahe multipole expan-
sions of the fundamental solutions (2.3), truncated at &finiand in a manner suggested by their multiplicative
form. Whenzx andy belong to adjacent cells, traditional BEM evaluation methbased on expressions (2.3)
and (2.4) are used. To improve further the computationatieffcy of the FM-BEM, standard (i.e. non-FMM)
calculations must be confined to the smallest possibleapatjions while retaining the advantage of clustering
the computation of influence terms into non-adjacent largeigs whenever possible. This idea is carried out by
subdividing cubic cells into eight smaller cubic cells. Neairs of non-adjacent smaller cells, to which multipole
expansions are applicable, are thus obtained from the gl of pairs of adjacent cells. This is the essence
of the multi-level FMM, whose theoretical complexity (N log N) per GMRES iteration both for CPU time
and memory (see [Chaillat et al., 2008] for further detaiigtlee method and its implementation for single-domain
elastodynamic problems). This formulation will now be gatieed to seismic wave propagation in alluvial basins.

2.3 Boundary Element-Boundary Element coupling strategy

In the case of multi-domain problems, the boundary of eatinegion(2; generally contains boundary elements
and nodes, located dny;, that belong only td?;, and interfacial boundary elements and nodes belonging;to
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for somei # j. The governing boundary integral equation can then beemritbr each zone. A system of matrix
equations for each zone is obtained. The matrix relatiotittanrfor each of the individual zones can be assembled
for use in an overall analysis by considering the conditiohdisplacement compatibility and equilibrium of the
traction components at all interfaces.

To build the discrete problem, piecewise-linear interpofaof displacements, based on three-noded triangular
boundary elements is used. Because of the equilibrium ofrffation, piecewise-constant interpolation of trac-
tions based on boundary elements are used. In the case ofdolain problems, a boundary integral equation is
formulated for each subregidp; (with material properties assumed homogeneous in 8achrhe matrix-vector
products arising in each of these integral equations carvdleaed using the FM-BEM procedure for homoge-
neous media presented in the previous section. Each sabrisghus treated separately, with the help of a separate
octree.

3 Propagation and amplification of seismic waves in alluviabasins.

In [Chalillat et al., 2008], the single-domain elastodynafiMM has been checked for the case of the scattering
by an irregular surface of a plane P-wave with vertical ieoick and normalized frequenkya /7 = 0.25 (with

v = 0.25) against the results of [Sanchez-Sesma, 1983], and thdiedpp the same configuration with a higher
frequency kpa/m = 5). In this section, the present implementation is checketiencase of the propagation of
seismic waves in alluvial basins.

3.1 Diffraction of an incident plane P-wave by a single-layered semi-spherical basin

This first example is concerned with the diffraction by a septierical alluvial basin (i.e. soft elastic inclusion)
of a plane P-wave of unit amplitude traveling vertically melastic homogeneous irregular half-space (Fig. 3.1).
Such a configuration may lead to a strong amplification of &éensic motion in soft alluvial deposits.

We investigate the motion at the surface of the alluviali&si, for the following values of the material parameters:
1@ = 0.3, p@ = 0.6pM), v = 0.25 andv® = 0.3. The normalized frequency is defined By o/, i.e.

in terms of the properties of the elastic semi-infinite mediw;. The size of the discretized free surface is chosen
equal toD = 5a (as in [SAnchez-Sesma, 1983]).

Table 3.1: Diffraction of an incident plane P-wave by a septierical alluvial basin: data and computational
results

k}l)a/w N li;1o | CPU(s)/iter| nb iter.
0.5 17,502 | 3,3 8 39
2 190,299 | 5,4 79 627

The surface displacements computed with the present aatiain FMM are presented, along with corresponding
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Figure 3.1: Diffraction of an incident plane P-wave by a saptierical alluvial basin: notations
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Figure 3.2: Diffraction of an incident plane P-wave by a septierical alluvial basin (Ieftls;g)a/w = 0.5, right:
kg)a/ﬂ =2)

results from [Sdnchez-Sesma, 1983] and [Delavaud, 20@r7lj:,g‘)a/7r = 0.5 (Fig. 3.2, left). The results are seen
to be in good agreement.

Additionally, the FMM allowed to perform computations foigher frequencyfg)a/w = 2 (Fig. 3.2, right). In
Table 3.1, the number of DOFs and the leaf leféh each subdomaif; are given for the meshes used, together
with the CPU time per iteration and iteration counts recdrdehe last example indicates that the iteration count
significantly impacts the computational efficiency for gesh sizes for which the CPU time per iteration and the
memory requirements are still moderate. An efficient prd@t@mning strategy is needed and will be addressed in
future investigations.
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3.2 Diffraction of an incident plane P-wave by a two-layered semi-spherical basin

The examples presented in section 3.1 were limited to aesilagkred basin, whereas the present implementation
is in fact applicable to more general configurations featun subregions« > 1). To demonstrate this capability,
the diffraction of an incident plane P-wave by a heterogasesemi-spherical basin is now considered for an
alluvial deposit composed of two layers (Fig. 3.3). The teyelrs(2, and(23 are made of different materials, with
mechanical properties defined so that the velocity contbreisteert, (2, and betweelf),, Q3 are the same:

p@ B p®

T S Y 1 _ ) 2 _  (3) _
= =06 0.3; v =025 v® =00 =030 (3.2)

The thicknes$(?) andh®) of the layers), and(2; are adapted to the wavelengths:

@ L
h o h R ﬂ; -2 (3.2)
AP W (1+?2) (1++?2)

The mesh featured’ = 91, 893 DOFs. The normalized frequencykig)a/w = 1. The computation takexl8 iter.,
48 sliter (1 = 4, 45 = 3, {3 = 3).
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Figure 3.3: Diffraction of an incident plane P-wave by a tlagered semi-spherical basin: notation.

In Figure 3.4, the results of the computation for the twoelag semi-spherical basin are compared to those for a
one-layered basin. The introduction of the laggyleads to stronger amplification, with shorter wavelengths,
the basin.

4 Conclusion

In this article, a multi-level fast multipole multi-domafarmulation has been proposed, based on previous works
on single-region FMM [Chaillat et al., 2008]. Comparisonistvthe analytical or previously published numerical
results show the efficiency and accuracy of the present iigahéation. The studies of seismic wave propagation
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Figure 3.4: Diffraction of an incident plane P-wave by a tlagered semi-spherical basibﬁ)a/w =1).

in canonical basins for higher frequencies than in prelyopablished results show the numerical efficiency of

the method and suggest that it is suitable to deal with té&aBgismological applications. The transient response
of 3-D basins has also been investigated to illustrate tigee ldomain of application of the method. Moreover,

because the hypothesis of a linear elastic soil is often uificent, the extension of the present work to linear

viscoelasticty is under way.
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