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ABSTRACT: 
 
A response spectrum method for the seismic analysis of structures with added dampers is herein introduced.  
The method is based on a modal decomposition of the equations of motion and the derivation of relationships 
between spectral accelerations, velocities, and displacements valid for high damping ratios.  It involves the cal-
culation of the complex natural frequencies, mode shapes, and participation factors of the system and the use of 
an acceleration response spectrum.  It differs from similar methods proposed in the past in that it properly ac-
counts for the high damping ratios observed in structures with added dampers and employs unique formulations 
to determine the peak relative velocities and absolute accelerations of the system.  A numerical example is pro-
vided to illustrate the application of the procedure and compare the results attained with it and a time-history 
analysis. Through this example, it is shown that the proposed method is simple to use and leads to results that 
are close to the results from a time-history analysis. 
 
KEYWORDS: Response spectrum method, earthquake response analysis, passive structural control  
 
1. INTRODUCTION 
 
The use of damping devices to improve the seismic performance of structures is nowadays widely accepted by 
the engineering profession and is becoming thus a common occurrence. Although beneficial, the addition of 
damping devices to a structure may nonetheless change significantly its original properties, particularly when 
the damping introduced by the added dampers is much higher than the damping in the structure and the added 
damping is not evenly distributed throughout the structure.  Examples of these changes are: (1) a significant in-
crease in the values of the modal damping ratios of the structure; (2) a change in the relative values of these mo-
dal damping ratios among the various vibration modes, such that some modes may contribute little to the total 
response before the dampers are added but may contribute substantially afterwards; and (3) mode shapes and 
natural frequencies that deviate appreciably from the mode shapes and natural frequencies of the undamped 
structure.  Such changes, in turn, render the conventional response spectrum method and other approximate 
methods of analysis inadequate.  The reason is that it can no longer be assumed that the system is classically 
damped.  That is, it can no longer be assumed that pre-multiplication and post-multiplication by the undamped 
mode shapes may transform the damping matrix of the system into a diagonal matrix since in such a case the 
off-diagonal elements of the transformed damping matrix are of the same order of magnitude as the diagonal 
elements.  Hence, these off-diagonal elements cannot be considered negligibly small.  It is always possible to 
perform a reliable analysis through the step-by-step integration of the equations of motion, but this approach be-
comes cumbersome when the seismic input is specified in the form of a design spectrum or during the prelimi-
nary analyses carried out to select the size and location of the dampers. 
 
With the purpose of facilitating the analysis of structures with added dampers, this paper introduces a response 
spectrum method that effectively accounts for the aforementioned changes and is thus adequate for the seismic 
analysis of structures with added dampers.  The method is based on a complex modal decomposition of the 
equations of motion and the derivation of relationships between spectral accelerations, velocities, and displace-
ments valid for high damping ratios.  It involves the calculation of the complex natural frequencies, mode 
shapes, and participation factors of the system and the use of an acceleration response spectrum. It is intended 
for structures that are designed to remain in their linear range of behavior at all times and viscous dampers with 
a force-velocity relationship that is also approximately linear.  It differs from other response spectrum methods 
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proposed in the past for the analysis of nonclassically damped systems (i.e., Singh, 1980, Villaverde, 1980, 
Gupta and Jaw, 1986) in that it properly accounts for the high damping ratios encountered in structures with 
added dampers and employs unique formulations to compute the peak relative velocities and absolute accelera-
tions in a structure.  
 
 
2. DERIVATION 

Consider a linearly damped linear structure subjected to a ground acceleration ẍg(t). The equation of motion for 
this system when the structural displacements are expressed relative to the ground may be written as 
  )(}{][)}({][)}({][)}({][ txrMtxKtxCtxM gcccccccc &&&&& −=++  (2.1) 
where [M]c, [C]c, [K]c, {r}c, and {x(t)}c respectively denote the mass matrix, damping matrix, stiffness matrix, 
influence vector, and displacement vector of the structure-damper system. According to the method suggested 
by Foss (1952) and described in texts such as Hurty and Rubinstein (1964), a modal decomposition is possible if 
the equation is first reduced to a first-order equation of the form 
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Eqn. 2.2 is of size 2n × 2n, with n being the number of degrees of freedom of the structure, and is usually re-
ferred to as the reduced equation of motion.   
  
The solution of the homogeneous equation of motion; i.e., the solution of 

}0{)}(]{[)}(]{[ =+ tqBtqA &   (2.5)   
is of the form  
   (2.6) testq λ= }{)}({
and, thus, substitution of this solution into Eqn. 2.5 leads to the eigenvalue problem  

}0{}]){[]([ =λ+ sAB  (2.7)   
The solution of this eigenvalue problem, in turn, leads to a set of 2n complex-valued eigenvalues λi and a set of 
2n complex-valued eigenvectors{s}i.   It can be shown that when the system is underdamped, these eigenvalues 
and eigenvectors result in pairs of complex conjugates (Inman and Andry, 1980).  It can also be shown that the 
resulting eigenvectors are orthogonal with respect to the matrices [A] and [B].  That is,  
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where ωi, ωdi, and ξi respectively represent the natural frequency, damped natural frequency, and damping ratio 
in the ith mode of the system, j denotes the unit imaginary number, and {w}i is a complex-valued mode shape of 
size n that defines the relative amplitudes and phase angles of the various masses of the system when it vibrates 
freely in its ith mode.  
  
Because of the orthogonality of the eigenvectors {s}i with respect to the matrices [A] and [B], the matrix that 
contains all such eigenvectors represents a transformation matrix that decouples the reduced equation of motion.  
Accordingly, if [s] represents the matrix that contains the 2n eigenvectors of the system, and if {z(t)} is a vector 
of unknown modal coordinates, under the transformation 
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and after premultiplication by the transpose of [s] and the use of the aforementioned orthogonality properties, 
Eqn. 2.2 may be transformed into the set of independent equations 
  nitQtzBtzA iiiii 2,,2,1),()()( L& ==+    (2.11) 
where zi(t) is the ith element of {z(t)} and Ai, Bi, and Qi(t) are complex-valued scalars defined by 
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Eqn. 2.11 is a first-order differential equation with constant coefficients.  As such, its solution may be obtained 
in terms of Duhamel’s integral.  Accordingly and under the assumption of zero initial conditions, zi(t) may be 
expressed as 
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Eqns. 2.10 and 2.13 constitute the modal solution of Eqn. 2.2.  Eqn. 2.10, however, may be written explicitly in 
terms of complex conjugates as 
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where a bar above a variable indicates its complex conjugate, and “Re” reads as “the real part of.”  Furthermore, 
in view of the first formula in Eqn. 2.4 and the second in Eqn. 2.9, it is possible to express Eqn. 2.14 alterna-
tively as  
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whose lower part leads to the following explicit solution of Eqn. 2.1:  
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Similarly, the substitution of the second formulas in Eqn. 2.9 and 2.4 into the third formula in Eqn. 2.12 yields  
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while the first formula in Eqn. 2.12 in combination with the first formula in Eqn. 2.3 and the second in Eqn. 2.9 
leads to  
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where Mci and Cci are a generalized mass and a generalized damping constant defined by 
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Furthermore, if Cci is expressed in terms of the damping ratio and natural frequency in the ith mode of the sys-
tem as Cci = 2ξiωiMci, then Ai may be put into the form 
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In the light of Eqns. 2.17 and 2.20, Eqn. 2.13 may be therefore expressed as 
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where Γci is a complex participation factor defined as 
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where icii wjw }{}{ Γ=′  (2.24) 
However, if {w′}i and λi are expressed explicitly in terms of their real and imaginary parts, if it is considered 
that and if the second exponential function is expanded in terms of its sine and cosine 
components, it may also be written as 

,)()( τ−ωωξ−τ−λ = tjt diiii eee
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where {u′}i and {v′}i respectively denote the real and imaginary parts of {w′}i.  Furthermore, from elementary 
structural dynamics it is known that the relative displacement yi(t) at time t of a single-degree-of-freedom sys-
tem with natural frequency ωi, damping ratio ξi, and damped natural frequency ωdi, when the system is subjected 
to zero initial conditions and a ground acceleration is given by ),(txg&&
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Similarly, by taking the first derivative with respect to time of Eqn. 2.26, it is known that the corresponding 
relative velocity is given by  
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Therefore, the integrals in Eqn. 2.25 may be expressed as  
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and Eqn. 2.25 may be written in terms of such displacement and velocity responses as 
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where {x(t)}ci denotes a vector that contains the displacements of the system in its ith mode, and 
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The maximum values of the displacement yi(t) and the velocity ẏi(t) may be determined from the displacement and 
velocity response spectra of the ground acceleration ẍg(t).   However, because these maximum values do not occur 
at the same time, the maximum values of the modal displacements {x(t)}ci cannot be determined directly from such 
spectra.  It is possible, nonetheless, to obtain an approximation using the response spectra in question if the yi(t) 
and ẏi(t) terms in Eqn. 2.30 are combined using the square-root-of-the-sum-of-the-squares (SRSS) rule.  That is, 
the maximum values of the displacements in each of the modes of the system may be approximated as 
   (2.32) 2/12222 ]}{}[{)}(max{ iiiici SDbSVatx ′+′=
where SVi and SDi respectively denote the ordinates corresponding to a natural frequency ωi and damping ratio ξi 
in the velocity and displacement response spectra of  the ground acceleration ẍg(t).  In turn, such maximum modal 
responses may be combined using, again, the SRSS rule to obtain an estimate of the maximum displacements.   
 
The relative velocities of the system may be similarly obtained by considering the upper part of Eqn. 2.15.  Ac-
cordingly, these velocities may be expressed as 
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But as in the case of the displacements, the integrals in Eqn. 2.35 may be expressed as indicated by Eqns. 2.28 
and 2.29.  Therefore, Eqn. 2.35 may also be written as 
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where {ẋ(t)}ci denotes a vector that contains the relative velocities of the system in its ith mode, and 
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As in the case of the displacements, the maximum values of yi(t) and ẏi(t) may be obtained from the response 
spectra of the excitation ẍg(t).  But also as in the case of the displacements, the maximum values of the modal 
velocities {ẋ(t)}ci cannot be obtained using the spectral values.  Nonetheless, an approximation may be obtained 
by combining the two terms in the right-hand side of Eqn. 2.36 using the SRSS rule.  That is, it may be consid-
ered that the modal velocities are approximately equal to 
   (2.38) 2/12222 ]}{}[{)}(max{ iiiici SDqSVptx ′+′=&

In like fashion, an estimate of the maximum velocities may be obtained by combining the maximum modal ve-
locities using the same rule. 
 
In determining the floor accelerations, it should be noted that in the case of high damping ratios the damping 
forces are not negligibly small in comparison with the elastic forces.  Hence, the floor accelerations cannot be 
considered approximately equal to the elastic forces divided by the corresponding floor masses, as is the prac-
tice in the case of conventional structures.  To determine the floor accelerations, then, it is necessary to obtain 
them directly from the equation of motion, i.e., Eqn. 2.1.  That is, one needs to consider that 
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which in terms of modal responses may also be expressed as 
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where {FI}ci , {FD}ci  and {FS}ci  are vectors of modal inertia forces, modal damping forces, and modal elastic 
forces respectively given by  
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Note, however, that in view of Eqns. 2.36 and 2.32, the vectors of modal damping forces and modal elastic 
forces may be expressed as 
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and, in consequence, the vector of modal inertia forces may be written as 
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As before, the maximum values of yi(t) and ẏi(t) may be obtained from the response spectra of the excitation 
ẍg(t) and the maximum values of the modal inertia forces may be estimated by combining the terms associated 
with yi(t) and ẏi(t) using the SRSS rule; i.e., according to   
   (2.44) 2/12222 ])}{][}{]([)}{][}{][([)}(max{ iiciciicicciI SDbKqCSVaKpCtF ′+′+′−′=
As before, too, the maximum values of the inertia forces may be approximately determined by combining the 
maximum modal values using the SRSS rule.  The maximum values of the floor accelerations may be consid-
ered approximately equal to 
   (2.45) cIcc tFMtu )}(max{][)}(max{ 1−=&&

 
It may be noted that Eqns. 2.32, 2.38, and 2.44 are expressed in terms of a spectral displacement and a spectral 
velocity. Thus, its application requires knowing the velocity and displacement response spectra of the excitation.  
In many cases, however, the velocity response spectrum is not directly available.  To overcome this problem in 
such cases, it is possible to use the empirical formula proposed by Sadek et al. (2000) to estimate spectral ve-
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locities is terms of the corresponding pseudovelocities.  That is, if PSVi denotes the pseudovelocity correspond-
ing to the spectral velocity SVi, it may be considered that 
  iiiiii SDrPSVrSV ω==  (2.46) 
in which  (2.47) 22 621.0838.0193.0          382.0647.0095.1      where iiviiivi

b
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Furthermore, given an acceleration response spectrum, the spectral displacements may be determined from the 
equation that relates the spectral acceleration SAi to the spectral displacement SDi and the spectral velocity SVi. 
That is, from the equation 
   (2.48) 2/122222 ])/4([ iiiiii SVSDSA ωξ+ω=
which after incorporating Eqn. 2.46 becomes 
  222 41 iiiii rSDSA ξ+ω=  (2.49) 
 
Eqn. 2.48 is derived by considering first that the absolute acceleration at time t of a single-degree-of-freedom sys-
tem with natural frequency ωi, damping ratio ξi, and damped natural frequency ωdi, which may be determined by 
taking the first derivative with respect to time of Eqn. 2.27 and adding the ground acceleration ẍg(t), is given by  
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which after using Eqn.s 2.28 and 2.29 may also be written as 
  [ ])()/2()()( 2 tytyta iiiiii &&& ωξ+ω−=  (2.51) 
Then, it is considered that the maximum values of the absolute acceleration, relative velocity, and relative dis-
placement are respectively equal to the spectral acceleration, spectral velocity and spectral displacement, and that 
the maximum values of the displacement and velocity terms in Eqn. 2.51 may be combined using the SRSS rule.  
Observe that for small damping ratios, Eqn. 2.48 is reduced to the classical relationship SAi = ωi

2SDi. 
  
It is also worthwhile to recall that the applicability of the SRSS rule is limited to systems with well-separated 
natural frequencies.  Although most structures with added dampers possess well-separated natural frequencies, it 
is important to keep in mind that it is necessary to use a combination rule of the double-sum type whenever a 
structure has, instead, closely spaced natural frequencies.  The reader is referred to Villaverde (1988), Maldona-
do and Singh (1991), Sinha and Igusa (1995), and Zhou et al. (2004) for modal combination rules applicable to 
systems with closely spaced natural frequencies and nonclassical damping. 
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Table 3.1. Dynamic properties of undamped frame 
Mode 1 2 3 

Frequency2
 (rad2/s2) 511.204 5025.43 14008.

Natural period (s) 0.278 0.089 0.053 
Participation factor 1.0 1.0 1.0      

 1.284 -0.389 0.105 
Mode shape 0.973 0.214 -0.187 

 0.436 0.377 0.186 

 Figure 3.1. Three-story frame building 
 considered in comparative analysis 
 
 
3. COMPARATIVE ANALYSIS 
 
To illustrate the application of the proposed procedure and assess its accuracy, the 3-story reinforced concrete 
frame building shown in Figure 3.1 is analyzed under the ground motion recorded in the North-South direction at 
the Takatori station during the 1995 Kobe earthquake.  The plan dimensions of the building are 8.0 m × 8.0 m. The 
dimensions of all the columns are 0.6 m × 0.6 m and the dimensions of all the beams are 0.5 m × 0.8 m.  The com-
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pressive strength of the concrete is 27.579 GN/m2 and its modulus of elasticity is 24,821,128 kN/m2. Considering a 
combined dead and live load of 6.3 kN for the floors and 4.7 kN for the roof, the frame has masses of 10.275 Mg 
lumped at the floor joints and 7.666 Mg at the roof joints.  The first floor of the building is implemented with a 
supplemental linear damper with a damping constant Cd of 3500 kN-s/m.  Without the damper, the building’s 
damping matrix is considered proportional to its stiffness matrix and with a damping ratio of 2 percent in its first 
mode of vibration.  The undamped frame exhibits the dynamic properties shown in Table 3.1.  Without the 
damper, the damping ratios in the second and third modes of the frame are 0.063 and 0.105, respectively 
 

Table 3.2.  Dynamic properties of damped frame with added damper 
Mode 1 2 3 
Eigenvalue, λi -5.86873+24.7311j -62.0416+41.6766j -17.5131+98.3091j 
Natural period (s) 0.247 0.084 0.063 
Damping ratio 0.231 0.830 0.175 
Participation factor -8.059+42.754j -96.196+37.728j 34.763+50.682j 
 -0.00487-0.03030j 0.00166-0.00091j 0.00117+0.00536j 
Mode shape, {w}i -0.00669-0.02138j -0.00194-0.00473j -0.00043-0.00762j 
 -0.00690-0.00734j -0.01071-0.00588j -0.00338+0.00061j 

 
Table 3.3.  Spectral values corresponding to frame with added damper 

Mode Ti (s) ξi SAi (m/s2) avi bvi ri SDi (m) SVi (m/s) 
1 0.247 0.231 7.738 1.224 0.353 0.747 0.0113 0.215 
2 0.084 0.830 6.063 1.369 0.461 0.437 0.0009 0.029 
3 0.063 0.175 6.015 1.197 0.321 0.493 0.0006 0.029 

 
The damping matrix of the structure with the damper is obtained by adding to the damping matrix without the 
damper the horizontal force exerted by the damper on the first floor when this floor is subjected to a unit hori-
zontal relative velocity.  When the damper is oriented as shown in Figure 3.1, this force is equal to FD = Cd 
cos2θ = 3500 cos2 26.57° = 2800 kN.  With the damping matrix constructed this way, with the solution of the ei-
genvalue problem [B]{s} = -λ[A]{s}, and with the consideration of Eqns. 2.9 and 2.22, the dynamic properties 
of the frame result as shown in Table 3.2.  These dynamic properties correspond to the three modes of the sys-
tem that are not a complex conjugate of another mode.   
 
Now, from the acceleration response spectrum of the ground motion being considered, the spectral accelerations 
corresponding to the natural frequencies and damping ratios given in Table 3.2 are as listed in Table 3.3.  Simi-
larly, the constants avi, bvi and ri defined by Eqn. 2.47 take the values indicated in Table 3.3.  In terms of these 
constants, the aforementioned spectral accelerations, and Eqns. 2.49 and 2.46, the corresponding spectral veloci-
ties and spectral displacements are as shown in this same table. 
 
In terms of the dynamic properties and spectral values given above, Eqns. 2.32, 2.38, and 2.45 and the combina-
tion of the maximum modal responses using the SRSS rule lead to the maximum relative displacements, maxi-
mum relative velocities and maximum absolute accelerations listed in Table 3.4.  For comparison, the corre-
sponding responses obtained through a time-history analysis with a time step of 0.005 seconds using the com-
puter program SAP200 and with the so-called forced classical damping method are also shown in this table.  As 
is well known, the analysis with this latter method is performed using the natural frequencies and mode shapes 
of the undamped system and damping ratios calculated under the assumption of classical damping.  That is, 
damping ratios calculated by assuming that the transformed damping matrix is a diagonal matrix and that the di-
agonal elements in this matrix represent the damping constants of the system in each of its modes.  For the case 
under consideration, the damping ratios obtained using this approach are shown in Table 3.5.  Also shown in 
this table are the spectral accelerations, spectral velocities and spectral displacements corresponding to these 
damping ratios and the natural frequencies of the undamped frame. The spectral displacements and velocities in 
Table 3.5 are also calculated using Eqns. 2.49 and 2.46. 
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It may be seen, thus, that the results obtained with the proposed method are close to the results determined using 
a time-history analysis.  This in spite the fact that only one ground motion is considered in the analysis and that 
the SRSS combination rule is supposed to be accurate for statistical averages only.  It may also be seen that ex-
cept for the first-floor acceleration, the results obtained with the forced classical damping method are also close 
to the time-history analysis results.  This seems to coincide with the findings of Zhou et al. (2004). 
 

Table 3.4.  Peak responses obtained with proposed method, forced classical damping method, and SAP2000 
Proposed method Classical damping SAP2000  

Floor Disp. 
(m) 

Vel. 
(m/s) 

Acc. 
(m/s2) 

Disp. 
(m) 

Vel. 
(m/s) 

Acc. 
(m/s2) 

Disp. 
(m/s) 

Vel. 
(m/s) 

Acc. 
(m/s2) 

3 0.0152 0.286 10.613 0.0182 0.308 10.037 0.0185 0.336 8.788 
2 0.0107 0.222 8.024 0.0136 0.233 7.573 0.0143 0.235 7.977 
1 0.0043 0.120 7.285 0.0073 0.105 4.177 0.0067 0.096 6.738 

 
Table 3.5.  Spectral values for frame with added damper but considered classically damped 

Mode Ti (s) ξi SAi (m/s2) avi bvi ri SDi (m) SVi (m/s) 
1 0.278 0.262 7.58 1.238 0.370 0.771 0.0138 0.240 
2 0.089 0.517 6.08 1.327 0.460 0.436 0.0011 0.034 
3 0.053 0.362 6.01 1.279 0.415 0.378 0.0004 0.018 

 
 
4. CONCLUDING REMARKS 
 
The derived expressions and the results from the comparative analysis seem to indicate that the suggested pro-
cedure is simple to apply and offers an accuracy that is comparable to the accuracy provided by the conventional 
response spectrum method.  It is believed, thus, that it represents a convenient alternative for the seismic analy-
sis of structures with added dampers. 
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