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ABSTRACT: 

Seismic damage assessment is dealt with in terms of fragility curves. Several approaches for their evaluation, including 
first-order reliability and a fuzzy random method, are reviewed. These methods are applied to a deterministic infilled 
reinforced-concrete frame, and the resulting fragility curves compared. Aim is to appraise empirically any difference. 
Nonstructural damage of the infill is considered. It is assumed to be correlated with the peak interstory drift ratio and 
dependent on the peak ground acceleration. It is concluded that randomness of the capacity is essential. If a damage 
state is associated with a deterministic drift range, then fragility steeply increases with the peak ground acceleration, 
and it is quite overestimated. Comparatively, any other difference among the considered methods results to be minor. 

KEYWORDS: Fragility curve, lognormal distribution, infilled frame, nonstructural damage, interstory drift 

 
 
1. INTRODUCTION 
 
Quantification of the seismic damage is essential, particularly for the buildings (Hwang and Jaw, 1990; Mosalam et al., 
1997; Singhal and Kiremidjian, 1996). Before the occurrence of earthquakes, predicting damage scenarios may address 
the planning of strengthening and upgrading. After a destructive earthquake, measurement of damage on individual
buildings may result in declaring their immediate functionality or the need for abandoning them. Post-earthquake 
damage assessment may also suggest the choice among repairing, retrofitting, or demolishing and rebuilding. 
 
The damage measure depends on the ground motion, both the response and the capacity of the building itself, and the 
damage index. Many uncertainties affect them, thus a probabilistic assessment seems to be proper. Basically, such an 
approach involves two quantities: the hazard at the site and the vulnerability of the building. This work deals with the 
second one only. Vulnerability is characterized by analytical fragility curves conditional on the earthquake intensity. 
 
A number of methods exist for deriving the fragility curves. Aim of this work is briefly reviewing several approaches, 
and comparing empirically the fragility curves obtained by such methods, once applied to a same benchmark structure.
This is a deterministic four-story masonry-infilled reinforced-concrete (RC) frame, modeled member by member and 
analyzed under artificial accelerograms. The infill damage is considered. The peak interstory drift ratio is adopted as 
the damage index. The intensity of the ground motion is characterized in terms of the peak ground acceleration (PGA).
 
 
2. METHODS FOR FRAGILITY EVALUATION 
 
Mathematically, fragility is the probability of attaining or exceeding a certain damage state, conditional on the ground 
motion intensity. In the case of analytical evaluation, discrete values of this probability are obtained by numerical 
simulation, and related statistical inference, of the demand D at discrete ground motion intensities G = gj given the 
capacity Ci against every damage state i. Symbolically, one can write such discrete values of fragility as follows: 
 

 }|{ jiij gGCDPP =≥=  (2.1) 
 
Capacity may be assumed to be either deterministic or random. In the former case, Ci in Eqn. 2.1 is the threshold value 



The 14
th

 World Conference on Earthquake Engineering 
October 12-17, 2008, Beijing, China  
 
 

associated with the onset of the damage state i. This is quantified by a proper damage index. 
 
The fragility curve expresses the exceeding probability as a continuous function of the ground motion intensity, that is 
Pi = Pi (G). Usually, this is the smooth function that fits best, in some sense, the discrete values of probability versus
those of the ground motion intensity. Various methods used to identify a fragility curve are mentioned in the next 
sections. All in all, Eqn. 2.1 is worthy of a greater attention with respect to the problem of fitting the probability values.
 
 
2.1. Relative Frequency (RF) Method 
 
Capacity is assumed to be deterministic. The exceeding probability is approximated by the relative frequency, that is: 
 

 NnP ijij =  (2.2) 
 
nij is the number of demands found to exceed the capacity Ci among the performed N realizations at the ground motion 
intensity gj. The fragility curves pertaining to each damage state i derive from least-squares fitting of such cumulative 
relative frequencies. For instance, Mosalam et al. (1997) assumed an exponential fitting model. This is a crude, quite 
simple method characterized by being independent of any particular probability distribution of the realizations. 
 
 
2.2. Lognormal Distribution (LD) Method 
 
Capacity is assumed to be deterministic. The realizations are assumed to follow some probability distribution function, 
to be identified specifically to both the damage state and the ground motion intensity. Eqn. 2.1 writes: 
 

 )(1 iijij CFP −=  (2.3) 
 
Fij is the cumulative probability distribution function. It is common to use the two-parameter lognormal distribution.
Singhal and Kiremidjian (1996) verified such assumption at a 5% confidence level by the Kolmogorov-Smirnov test, 
and assumed a lognormal distribution function to express the fragility curves as well, identified by ordinary fitting. 
 
 
2.3. Maximum Likelihood (BD) Method 
 
Capacity is assumed to be deterministic. Following Shinozuka et al. (2000), each realization is interpreted as the result 
of a multi-outcome Bernoulli-type experiment, in the sense that it resolves a dichotomy for a number of events. In fact, 
each damage state i results to be at least attained in the realization, or contrarily it is not. Similarly to the LD method, a 
lognormal distribution function is assumed to express the fragility curves. They are formulated as follows: 
 

 
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Ф is the standard normal cumulative distribution function. ai and bi are the parameters specific to each damage state i. 
Distinctive of this method is that the parameters are identified on a consistent, rational basis, so that a fragility curve is 
more than a mere least-squares fitting function. In fact, the parameters maximize the following likelihood function: 
 

 ( )∏ −−=
jk

iii
ijkijk PPL δδ 11  (2.5) 

 
δijk is either 1 or 0 depending on whether or not the damage state i is at least attained under the ground motion intensity 



The 14
th

 World Conference on Earthquake Engineering 
October 12-17, 2008, Beijing, China  
 
 

gj in the realization k. Computationally, it is convenient to maximize the logarithm of Li. Shinozuka et al. (2000) used a
straightforward optimization algorithm. In this work, the Powell algorithm is used to solve the nonlinear equations: 
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2.4. First-order Second-moment (FS) Method 
 
Both demand and capacity are treated as random variables. According to the full distributional approach, it is: 
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fCD is the joint probability density function of capacity and demand. Assumed that they are independent and lognormal, 
Eqn. 2.7 reduces to the first-order reliability basic formulation in terms of the second moments of the distributions: 
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µln and σln are the log-parameters of the distributions. Among others, Hwang and Jaw (1990) adopted this approach. 
 
 
2.5. Fuzzy Random (FR) Method 
 
Often the damage quantification seems to be naturally fuzzy, especially if the damage scale is descriptive. For instance, 
it may be not clear whether to classify a certain level of concrete crushing and cracking as moderate damage or heavy
damage, a certain member as repairable or to be replaced. Formally, a certain condition may belong to more than one
damage state, with some degree of membership to each. Exceeding a damage state i becomes a fuzzy random event. 
From basic theory, its probability is the expectation of the membership function µE relevant to this event, i.e.: 
 

 ∫∫
∞

= dcdcfdcP
jii DCEij d d ),(),(µ  (2.9) 

 
Gu and Lu (2005) assumed the membership function µE to be the normalized integral of a piecewise second-degree 
Bernstein polynomial. In this work, the following piecewise second-degree Bernstein polynomial is directly assumed: 
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γi is a parameter that regulates the steepness of the membership function of the damage state i, that is its fuzziness. 
Under the additional assumption that capacity and demand are independent and lognormal, Eqn. 2.9 reduces to a sum 
of nine one-dimensional convolution integrals involving the standard normal cumulative distribution function. 
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2.6. Evaluation of the Lognormal Distribution Parameters 
 
Capacity and demand involved in the damage assessment are non-negative, thus they are often assumed to follow a 
two-parameter lognormal distribution. Three approaches may be adopted to estimate its parameters: the moment (M)
method, the maximum-likelihood (ML) method, and the least-squares (LS) method (Stoica et al., 2007). 
 
According to the M method, the population mean and the population standard deviation are respectively approximated 
by the sample average and by the sample standard deviation. Then basic relations about moments are used to obtain the 
log-mean and the log-standard deviation. The ML method considers statistics of the logarithms of the realizations, 
rather than the realizations themselves. Thus the log-mean and the log-standard deviation are directly estimated as the 
sample average and the sample standard deviation, respectively. Finally, the LS method estimates the log-parameters 
by least-squares optimization. First, realizations are sorted in ascending order. The cumulative probability associated
with the realization at position m is assumed to equal its cumulative relative frequency m ⁄ (N + 1). The inverse of the 
standard normal cumulative distribution function at such probabilities gives the values of a standard normal variable
corresponding to the realizations. Least-squares fitting of the realizations versus the standard normal variable gives the 
log-parameters (e.g., see Hwang and Jaw, 1990). Both exponential and equivalent linear regression models may be 
used for this purpose. Alternatively, the log-parameters may be evaluated by iteration, aiming to minimize the sum of 
the squares of the differences between the cumulative relative frequency and the theoretical cumulative probability 
consistent with the current log-parameter values (Stoica et al. 2007). 
 
Stoica et al. (2007) found that the accuracy of the methods was similar in many cases. The LS method (applied in its 
latter formulation only) provided the best accuracy, even much greater than that of the other methods in some cases. In 
this work, the LS method in its former formulation only is applied, together with the M and ML methods. 
 
 
3. BENCHMARK INFILLED-FRAME STRUCTURE 
 
The aforesaid methods are applied to a four-story three-bay RC frame of a residential building. Stories are 3m high, 
spans are 5m long. The beam cross-section is 30×50cm everywhere. At levels 1 and 2, the outer column cross-section 
is 50×50cm, the inner column cross-section is 55×55cm. At levels 3 and 4, the lengths of the column cross-section are 
5cm lesser. This frame is designed according to Eurocodes (European Committee for Standardization, 2004a, b) with a
modal response-spectrum seismic analysis. The concrete average compressive strength is 33MPa, the steel average
yield strength is 530MPa. Dead load amounts to 32kN/m on the residential floors, 24kN/m on the roof. Live load 
amounts to 8kN/m everywhere. The seismic design ductility class is medium. The corresponding behavior factor equals 
3.9. The design PGA is 0.25g times an amplification factor equal to 1.35 due to the present ground type. 
 
The RC frame is uniformly infilled by nonstructural masonry walls made of perforated bricks and cement mortar. 
These walls are 16cm thick. The masonry shear modulus is 1.1GPa, its Young modulus is 2.0GPa. The shear strength 
is 1.0MPa, the compressive strength is 5.0MPa. All properties are assumed to be deterministic. 
 
 
3.1. Hysteretic Model 
 
In order to carry out the non-linear time-history analyses for fragility computation, the frame members are modeled
one-to-one as linearly elastic beam elements. Their stiffness is one half of the stiffness associated with the concrete 
gross, uncracked cross-section (European Committee for Standardization, 2004b). Each beam element is provided with 
two rigid-plastic point springs located at its ends. The spring cyclic behavior follows the model by Takeda as simplified 
by Otani and by Litton (CEB, 1996), with the model parameters β and α assumed equal to 0 and 0.4, respectively. The 
yield bending moments are calculated using the average strength of concrete and reinforcing steel. The strain hardening 
ratio referred to the member load-displacement curve is defined to be 1.0% for the beams, and 0.5% for the columns. 
 
Infill walls are modeled as a pair of diagonal struts connecting the frame joints. The hysteretic model by Panagiotakos 
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and Fardis (Fardis, 1997) in its second version is assumed. This is a multi-linear phenomenological model including 
first cracking, pinching, strength decrease in reloading and deterioration of the envelope curve. Additional information 
on the model calibration and parameter values can be found elsewhere (Colangelo, 2003). 
 
Linear viscous damping is defined as proportional to both the mass and the initial stiffness matrix of the infilled frame. 
In the linearly elastic response, it equals 5% for the first and the third mode of oscillation in the horizontal direction. 
 
 
3.2. Capacity of the Infill Wall 
 
The infill damage is descriptively classified into four levels of severity. These levels are named minor, moderate, major, 
and complete damage. Minor damage consists in the first cracking of the infill. Moderate damage corresponds to 
extensive, wide cracks in the infill, however before attaining its peak strength. Major damage is reached as a few bricks 
exhibit splitting and falling out of their outer layer. Repairing of the infill is reasonable still. In the complete damage, so 
many bricks have been broken as attempting to repair the infill is unreasonable, and rebuilding is necessary. 
 
The infill capacity against the aforesaid damage states is assumed on the basis of pseudo-dynamic tests carried out with 
one-bay one-story infilled-frame specimens scaled 1:2 (Colangelo, 2005). In fact, the model outlined in Section 3.1 was 
calibrated so that its results are in reasonable agreement with the experimental ones (Colangelo, 2003). Capacity was 
identified by statistical processing of both the experimental and numerical results (Colangelo and Stornelli, 2006). 
 
Many damage indices exist in the literature. In this work, the peak interstory drift ratio is adopted. Its lognormal 
probability density function and membership function have the parameter values listed in Table 1. They are illustrated
in Figure 1. Symbols mark every observation of the drift at a damage state, as measured in the pseudo-dynamic tests. In 
the case of deterministic capacity, the drift range associated with each damage state is assumed to be bounded by the 
drift values where the probability density functions intersect each other. The drift value causing the onset of minor 
damage is assumed to be the same (lower) percentile as that distinguishing minor damage from moderate damage. 
 
 
4. GROUND MOTION 
 
Code-compatible artificial accelerograms are used in the nonlinear dynamic analyses. They consist of truncated cosine
series with stationary frequency content. Following Vanmarcke (Lomnitz and Rosenblueth, 1976), the power spectral 
density function is identified by iteration, until the elastic response spectrum derived by the peak factor matches the
design elastic response spectrum to a reasonable degree of accuracy. Intensity is made non-stationary by a trapezoidal 
modulating function. The total duration is twice that of its stationary part, which is assumed to linearly increase from 
10s to 25s as the PGA increases from 0.1g to 0.4g. Outside this range, the duration is kept equal to its bounding values.
 
 
5. ESTIMATED FRAGILITY CURVES 
 
5.1. Number of Realizations 
 
In order to represent the design seismic action, Eurocode (European Committee for Standardization, 2004b) prescribes 
a minimum of three artificial accelerograms. As a matter of fact, ten or so accelerograms generated as previously said
give an average acceleration elastic response spectrum in a good agreement with the design spectrum. However, a
much greater number of analyses results to be necessary to obtain stable statistics of the drift ratio, its dispersion more 
than its average. This is shown in Figures 2 and 3. In addition, the proper sample size increases with increasing the
PGA (and duration as well, Section 4). This seems related to the degree of nonlinearity in the response. In fact, Figures
2 and 3 show that as soon as the drift at some story exceeds the first cracking value, the relevant standard deviation to a 
great extent increases, and it needs more realizations to become stable (please note that the axis scales are different). 
The inherent degree of nonlinearity is perceived in Figure 4. In the following, 100 realizations are treated at each PGA.
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5.2. Lognormal Distribution Parameters 
 
Preliminarily, the lognormal distribution is found to fit the peak drift ratio a little better than the normal distribution. This 
is shown in Table 2, where the coefficients of determination calculated by the LS method for both distributions are listed.
Higher values denote that the regression curve is a little more effective in explaining the total variation about the mean in 
the case of lognormal distribution. A similar result was previously found for the capacity (Colangelo and Stornelli, 2006).
Referring to the lognormal distribution, the M, ML, and LS methods yield the parameter values reported in Tables 3 and 
4. All in all, if one aims to practically evaluate the (relatively great) probability related to a seismic fragility curve, the 
three methods result to be equivalent. The M method is used to derive the fragility curves in the next section. 
 
 
5.3. Fragility Curves 
 
The fragility curves of the first story, that is where damage would be concentrated in the case of uniformly infilled
frames, are plotted in Figure 5. It appears that differences between the RF and LD methods are insignificant, again as 
long as one is interested in evaluating the seismic fragility. In fact, the relative frequency, Eqn. 2.2, almost coincides 
with the exceeding probability by lognormal distribution, Eqn. 2.3. Any difference with the BD method is small as 
well, at the greater damage states especially for this story. The FS method suggests the damage to start under a similar 
PGA. However, sensitivity to the PGA is much lower, and fragility is much less thereafter. This remark also applies to 
the FR method, therefore this difference seems due to having considered a random capacity, rather than fuzziness. 
Assuming the threshold drift value that defines capacity to equal the mean value of the lognormal distributions, rather
than the lower bound of the drift range said in Section 3.2, causes the LD curves to shift to the right (please look at the 
dashed lines). The LD curve intersects both the FS and FR curves now, however its greater steepness remains. 
 
 
6. CONCLUSIONS 
 
A number of approaches to derive seismic fragility curves have been mentioned and applied to a single infilled-frame 
structure. The resulting fragility curves are compared empirically. Damage of the nonstructural infill wall is considered, 
in correlation with the peak interstory drift ratio and depending on the PGA. From the practical point of view, certain
fragility curves almost coincide, thus complexity of some formulations appears to be redundant. The outstanding result 
is that considering randomness of the capacity is essential. Fuzziness seems to be not as important. If a threshold drift 
value is associated with the damage occurrence, then the fragility steeply increases with the PGA. If the lower bound of
a range of possible drift values is assumed, then the fragility is overestimated, to a quite conservative degree. 
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Table 1 Parameter values of the infill capacity in terms of the peak drift ratio 
Damage state Minor Moderate Major Complete 

Drift mean value [%] 0.03 0.40 0.80 1.60 
Drift standard deviation [%] 0.02 0.30 0.40 0.40 
Fuzziness parameter γ (Eqn. 2.10) 0.95 0.97 0.91 0.70 

 
Table 2 Coefficient of determination [%] of the normal and lognormal distributions of the peak drift ratio 

PGA 0.2g 0.3g 0.4g 0.5g 
Story 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Normal 98.2 98.2 97.7 97.3 84.1 97.2 96.2 97.7 96.5 98.3 71.3 97.4 96.5 91.5 88.3 99.2
Lognormal 98.6 98.6 98.8 98.5 90.4 98.1 98.0 98.7 97.7 92.0 81.5 98.5 99.5 96.9 98.1 99.2

 
Table 3 Mean value of the peak drift ratio [%] according to the M, ML, and LS methods 

PGA 0.2g 0.3g 0.4g 0.5g 
_Story 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

M method 0.02 0.02 0.02 0.01 0.04 0.04 0.03 0.02 0.37 0.36 0.06 0.03 0.83 0.78 0.28 0.04
ML method 0.02 0.02 0.02 0.01 0.04 0.04 0.03 0.02 0.37 0.36 0.06 0.03 0.83 0.78 0.28 0.04
LS method 0.02 0.02 0.02 0.01 0.04 0.04 0.03 0.02 0.37 0.36 0.05 0.03 0.83 0.78 0.29 0.04

 
Table 4 Coefficient of variation [%] of the peak drift ratio according to the M, ML, and LS methods 
PGA 0.2g 0.3g 0.4g 0.5g 

_Story 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 
M method 7.4 6.3 8.2 10.2 20.1 5.6 7.7 7.1 22.9 24.2 35.3 8.3 23.5 22.4 36.3 9.3 
ML method 7.4 6.3 8.2 10.1 18.3 5.6 7.6 7.0 23.4 28.1 29.1 8.3 23.3 21.2 34.6 9.4 
LS method 7.6 6.5 8.4 10.4 18.0 5.7 7.8 7.2 24.0 27.9 27.1 8.5 24.1 21.6 35.6 9.7 
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Figure 1 Probability density functions (a) and membership functions (b) of the infill capacity 
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Figure 2 Sample average of the peak drift ratio; the symbol “►” marks the infill first cracking drift 
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Figure 3 Sample standard deviation of the peak drift ratio 
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Figure 4 Base shear versus roof displacement, realizations no. 42 
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Figure 5 Fragility curves of the first story 


