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ABSTRACT : 

A new approach to determination of equivalent static seismic loads is presented for evaluating peak seismic 
responses. The responses are estimated by series of multi-modal pushover analysis considering possible phase 
differences in the dominant modes: the loads are directly applied in the elastic systems, and the damping due to 
plastic dissipation is modeled by equivalent linearization in inelastic systems. The accuracy of the proposed 
method is demonstrated in the numerical example of an arch-type long-span truss. 
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1. INTRODUCTION 
 
In the seismic design of structures, the peak values of responses such as displacements and base shear forces
should be evaluated under possible earthquake excitations. Nonlinear static pushover analysis is commonly 
adopted to approximately estimate the seismic responses in practical design, instead of the Time-History 
Analysis (THA). Thus, the accuracy of static load pattern is the key to accurate estimation of the responses. 
There have been numerous studies on development of equivalent static loads for building frames, and the main 
purpose of this paper is to present a suitable load pattern for spatial structures for a given design response 
spectrum accounting for coupling of multiple vibration modes in dynamic responses.  
 
For an elastic system, the peak response can be measured from the response spectrum for each dominant 
vibration mode, which are combined by the Square-Root-of-Sum-of-Squares (SRSS) rule (Rosenblueth, 1951), 
or by the Complete Quadratic Combination (CQC) rule (Rosenblueth and Elorduy, 1969; Der Kiureghian, 
1981). For an inelastic system, these rules are not applicable, and three important problems arise in the static 
procedure: (1) how to deal with the vibration modes that are changed after plastification, (2) which modal 
combination rule to use, and (3) when to stop the increase of the loads.  
 
For problem (1), several adaptive force distributions have been proposed to follow the time-variant distributions 
of inertia forces to provide better prediction; see for example Fajfar and Gaspersic (1996), Bracci et al. (1997), 
Gupta and Kunnath (2000). However, they are conceptually complicated and computationally inefficient, and 
we use the elastic vibration modes to define load pattern, based on the assumption that the distribution of inertia 
forces does not change suddenly after plastification. 
 
For problem (2), some studies tried to find the optimal modal combination coefficients for dominant modes for 
building frames (Kunnath, 2004; Park et al., 2007). These coefficients, however, might not be optimal to other 
structures. In this study, we present a systematic way to determinate the coefficients considering possible phase 
differences between the dominant modes to obtain the snapshot of the response at maximum response.  
 
Regarding problem (3), responses of elastic systems are estimated by directly applying the equivalent loads, 
and those of inelastic systems are estimated by the modified capacity spectrum method to account for multiple 
dominant modes. 
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2. EQUIVALENT STATIC SEISMIC LOAD 
 
This section first identifies the vibration modes that dominate seismic response of a structure. A systematic way 
is then presented to combine the dominant vibration modes to derive the equivalent static seismic loads. 
 
2.1. Dominant Vibration Modes 
Behavior of a linear N-degrees-of-freedom system under ground motion ( )gu t  is governed by 

( ) ( ) ( ) ( )gt t t u t   Mu Cu Ku Mι                                   (1)
where u  is a vector of nodal displacements relative to the ground; M, C and K ( )N N  are the mass, 
viscous damping and stiffness matrices of the system; ι  is the influence vector: 1 in the direction of motion 
and 0 for others. The nodal displacements ( )tu  can be written as sum of the modal displacements ( )n tu  
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where nΦ , n  and nM  are respectively the vibration mode, modal participation factor and generalized mass, 
and ( )nD t  is the nth modal displacement defined by the circular natural frequency n  and damping ratio nh . 
 
The dominant modes can be identified by the effective mass ratio n  or the maximum strain energy nE : 
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where M  is the total weight of the structure, nD


 is the peak value in ( )nD t , or it is readily available from the 
displacement response spectrum. For the responses defined by the specific design spectra, nE  is more reliable 
than n  and n , because it incorporates the characteristics of the seismic motions (Kato et al. 2007). 
 
2.2. Load Pattern 
For a linear system, the displacements ( )n tu  corresponding to the nth mode at the specific time can be 
computed by the following pseudo-static equation against the equivalent static external loads ( )tf :  
                            ( ) ( )n nt tf Ku                                                (5)

Substituting ( ) ( )n n n nt D t u Φ  into the above equation, applying 2
n n nKΦ MΦ  and denoting the invariant 

external forces by n n n s MΦ  and pseudo-acceleration by 2( ) ( )n n nA t D t , we have 
                            2( ) ( ) ( ( ) ) ( ( ))( ) ( )n n n n n n n n n n nt t D t D t A t     f Ku K Φ MΦ s          (6)

For the case where pseudo-acceleration response spectrum nA


 is available, its corresponding static load is 
                            n n nAf s

 
                                                   (7)

Suppose that m lowest vibration modes dominate seismic response of a structure. It is unlikely that all the m
dominant modes reach their peak responses at the same time. Therefore, to obtain the snapshot of the peak 
deformation, a weighted sum of these static loads is defined as 
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where n  is the modal coefficient for the nth mode. 
 
For a linear system, the peak modal displacements nu  can be directly computed as follows from Eq. (2) 
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Suppose that the dominant modes vibrate in full amplitudes around the time of peak deformation of the 
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structure. From Eqn. (9), n  is determined by finding the time maxt , at which c  reaches its peak 
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within the time period 10 /t    , where n  is the phase angle of the nth mode. As will be interpreted later 
in the numerical example, the sign for each mode relies on the modal shape. The coefficients are then given as 
                             maxsin( )n n nt                                             (11)
Since the phase angles are random values, various possible phase differences should be considered; the mean 
value of the static responses by the different loads is taken as the estimated peak response of the structure. 
 
Fig. 1 shows a simple example illustrating how to derive the modal combination coefficients. Two sinusoidal
functions with amplitudes 1 2.0c  , 2 1.0c  , periods 12 / 2.0( )s   , 22 / 1.0( )s    and phase angles 

o
1 0  , o

2 30   are plotted in the figure. The signs corresponding to modes 1 and 2 are assumed to be 
positive; the sum of the two functions within the time period 0 1.0(sec)t   arrives its peak at time 

max 0.4(sec)t  . The coefficients are then computed by Eqn. (12) as 1 0.951  , 2 0.914  . 
 

 
Figure 1. Computation of modal combination coefficients. 

 
3. RESPONSE OF INELASTIC SYSTEMS 
 
In an elastic system, the peak response is determined directly as follows by applying the equivalent static loads: 
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In an inelastic system, however, the use of the same procedure will overestimate the response because of the 
reduced stiffness and increased damping due to plastification. To incorporate the effect of plastification, the 
capacity spectrum method (CSM) (Chopra and Goel, 1999; Freeman, 2004) is adopted here with modification 
to account for multiple dominant vibration modes. Moreover, we insist that the equivalent load is a weighted 
sum of the elastic modes to keep the procedure as simple as that for the elastic system, although the deformed 
shape will no longer follow exactly the combined modal shapes in inelastic range after plastification. The 
concept of CSM is illustrated in Fig. 2: it compares the capacity (diagram) of the structure converted from the
pushover curve, with demands (diagram) on the structure, in the form of an elastic response spectrum.  
 
3.1. Capacity Diagram 
Suppose that the displacements iu  and equivalent accelerations ia , at step i of the pushover process using the 
equivalent loads, are written as a linear combination of the dominant vibration modes 
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Using the orthogonality property of the vibration modes, the coefficients can be computed as 
                            Ti i
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a n nc Φ Ma                                   (14)

Moreover, similarly to ( )tu  and ( )n tu  in Eqn. (2), we write iu  as 
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Substituting Eqn. (14) into Eqn. (15) and using the orthogonality property of the vibration modes, we have 
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The generalized displacement and acceleration in the capacity diagram are defined as 
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The equivalent natural frequency is computed by 
                            /i i

eqT A D                                               (18)
 
3.2. Demand Diagram 
The demand diagram is also in the (psudo-)acceleration-displacement format. The post-yielding behavior is 
accounted for by equivalent viscous damping. To compute the equivalent damping ratio, we need to idealize the 
bi-linear capacity diagram as a linear system, as shown in Fig. 3. y y( , )D A  is the yielding point, and eq , 
and   are the equivalent natural frequency, equivalent hardening ratio and ductility ratio, respectively. For the
equivalent damping ratio eqh , we adopt the model in ATC-40: 

                            0eqh h h  , 2 ( 1)(1 )
(1 )

h  
   

 


 
                              (19)

where 0h  and h  are respectively the inherent viscous damping ratio and the equivalent hysteretic damping 
ratio, and   is the damping modification factor dependent on the types of hysteretic behavior of the system 
and the equivalent damping ratio. There are in total three types of system considered in ATC-40: Type A 
denotes hysteretic behavior with stable and full hysteresis loops; Type C represents severely pinched loops; and 
the hysteretic behavior of the Type system is between Type A and Type C. The demand diagram is updated as 
                            0A F G A                                                 (20)

where 0A  is the elastic acceleration spectrum, F  is the coefficient depending on the damping ratio, and 
G  is the coefficient representing the ground property. 
 

     
Figure 2. Concept of the capacity spectrum method.   Figure 3. Linear idealization of the capacity diagram. 
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3.3. Analysis Procedure 
The peak responses are approximated as follows by the equivalent static external forces: 
 
Step 1: Plot the pushover curve by the equivalent static seismic loads, and convert it into capacity diagram 

using Eqn.(17). Plot the demand diagram in terms of displacement and pseudo-acceleration for damping 
ratio 0h . 

Step 2: Use the first secant of the capacity diagram to find its intersection with the demand diagram to 
determine the peak displacement jD  and the corresponding pseudo-acceleration jA .  

Step 3: Calculate the equivalent damping ratio eqh  from Eqn. (20) and ductility by /j yD D  . 
Step 4: Plot the demand diagram for eqh , and find its intersection with the capacity diagram to read-off 1jD 

and 1jA  . 

Step 5: If 1 1( ) /j j jD D D   is sufficiently small, then terminate the iteration and approximate response is iu , 
where its corresponding quantity iD  satisfies 1

i
jD D  ; otherwise, let : 1j j   and go to Step 3. 

 
4. NUMERICAL EXAMPLE 
 
4.1. Arch Model 
We consider the arch model in Fig. 4. It represents one bay of a spatial structure that is widely used for school 
gymnasiums. The model consists of a cylindrical roof and two support columns. The span is 80 m, and the 
column height is 3.5 m. The lower nodes of the arch are located on a circle with radius of 80 m, and the 
half-open angle is 20 degrees. Both of the height of the roof truss and width of the column trusses are 1/40 of 
the span. The distance between two bays of the structure in the longitudinal direction is supposed to be 8 m.  
 
The members of the arch are steel pipes modeled as truss elements. The weight of the roof and the external 
walls are assigned as 0.98 kN/m2 and 1.47 kN/m2, respectively. The masses are lumped at the external nodes of 
the columns and the upper nodes of the roof. Young•s modulus is 2.05 1110  N/m2. For the inelastic system, the 
steel materials are idealized by a bilinear constitutive model with yield stress 2.35 810  N/m2, and hardening 
coefficient 1/100. The effect of geometrical nonlinearity is not considered in this study. 
 
The arch is subjected to horizontal motion. The values of nT , n , n  and nE  for the five lowest modes are 
listed in Table 1. It can be observed that the 1st and 3rd modes plotted in Fig. 5 dominate in the seismic 
response, since the sum of nE  corresponding to these two modes exceeds 95% of the total maximum strain 
energy, moreover, the values of n  and n  of these modes are much larger than any other modes.  
 
The peak displacements d1, d2, d3, d4, d5 at the nodes A, B, C, and reaction forces F1, F2 at node D as indicated 
in Fig. 4 are to be estimated. FEDEASLab by Filippou and Constantinides (2004), a MATLAB analysis 
program, is used for static and dynamic analyses in the study. 
 

 
Figure 4. The arch model; the horizontal displacements d1, d2, d3, base shear force F1  

     and vertical displacements d4, d5, base shear force F2 are to be evaluated. 
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(a) 1st vibration mode                        (b) 3rd vibration mode 

Figure 5. The 1st and 3rd vibration modes of the arch model. 
 

Table 1. The natural period nT , modal participation factor n , ratio of effective mass n   
      and maximum strain energy nE  of the five lowest vibration modes.  

Mode n nT  n  n  nE  
1 1.34 0.602 0.34 46.19 10  
2 1.14 0.0 0.0 0.0 
3 0.45 0.698 0.46 43.02 10  
4 0.42 0.0 0.0 0.0 
5 0.26 0.316 0.09 40.42 10  

 
4.2. Load Patterns 
The phase angle of the first vibration mode is fixed at 1 0.0  , while 3  is varied as / 8 ( 1,...8)i i  . The 
sign in Eqn. (11) is defined to be consistent with the signs of the mode components corresponding to each 
displacement or acceleration to be evaluated. Thus, we have the following two patterns: 
               Load pattern 1:   1 1 3 3 3sin sin( )c c t c t       for d1, d2, d3 and F1 
               Load pattern 2:   1 1 3 3 3sin sin( )c c t c t       for d4, d5 and F2 
 
The combination coefficients 1  and 3  are listed in Table 2, where there are eight cases for each load
pattern corresponding to the different phase angles of the 3rd mode; i.e., 3 / 8 ( 1,...8)i i   .  
 

Table 2. Modal combination coefficients.  
Pattern Phase 1 2 3 4 5 6 7 8 

1  0.83 0.86 0.88 0.92 0.95 0.98 0.99 1.00 
1 

3  0.26 0.49 0.70 0.77 0.84 0.90 0.98 1.00 

1  1.00 1.00 0.99 0.97 0.94 0.92 0.88 0.86 
2 

3  -1.00 -0.98 -0.95 -0.91 -0.85 -0.69 -0.61 -0.39 
 

 
Figure 6. Design pseudo-acceleration spectra for h=2%, 5%, 10% damping  

and response spectra of the artificial seismic motions. 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
4.3. Prediction Accuracy 
Ten artificial seismic motions are generated by the standard superposition method of sinusoidal waves (Scanlan 
and Sachs, 1974), where the phase difference spectrum of El-Centro 1940(EW) has been used. The target 
spectrum is the design acceleration response spectrum for 5% damping specified by Notification 1461 of the 
Ministry of Land, Infrastructure and Transport (MLIT), Japan, corresponding to the performance level of life 
safety. The amplification factor G for the ground of 2nd rank and the definition of F defined in Notification 
1457 of MLIT is used. The pseudo-acceleration spectra for h=2%, 5%, 10% damping, together with the design 
response spectra, are plotted in Fig. 6. 
 

Table 3. Mean and standard deviation of the estimation ratios for elastic system.  

 Horizontal direction 
(Load pattern 1) 

Vertical direction 
(Load pattern 2) 

Response d1 d2 d3 F1 d4 d5 F2 
Mean 0.98 0.98 0.99 0.87 0.91 0.99 0.79 

St. dev. 0.098 0.096 0.105 0.195 0.056 0.089 0.152 
 
In the THA, the Rayleigh damping is adopted with h = 0.02 for the 1st and 3rd modes, and the time step for 
integration by the Newmark-   method (  = 1/4) is 0.01 sec. The estimation ratio of each monitored response, 
defined as ratio of the predicted peak value to the value by THA, is used as accuracy measure.  
 
In the elastic system, the peak response is estimated by Eqn. (12). The mean values and standard deviations of 
estimation ratios are summarized in Table 3. It is observed that the proposed method is of high accuracy for 
estimation of peak seismic responses for elastic systems. 
 
The inelastic arch model is a Type C system with 0.33   in ATC-40, because the structure consists of 
slender members. Table 4 lists the result of the proposed method for each loading cases. eqT , eqh ,  , maxA
and maxD are the quantities at the intersection of the capacity and demand diagrams. The mean values and 
standard deviations of the estimation ratios corresponding to each monitored response are summarized in Table 
5. The proposed method underestimates the response d4, and has good estimation for other responses. 
 
 

Table 4. Results of nonlinear static analyses for the eight loading cases. 
Pattern Phase yA (m/s2) yD (m) eqT (s) eqh (%)   

maxA (m/s2) maxD (m) 
1 4.74 0.140 1.353 14.6 1.93 5.82 0.270 
2 4.61 0.110 1.268 15.6 2.22 6.00 0.244 
3 4.53 0.092 1.218 17.1 2.41 5.89 0.221 
4 4.51 0.089 1.212 17.3 2.45 5.88 0.219 
5 4.48 0.087 1.206 17.5 2.50 5.87 0.216 
6 4.50 0.086 1.200 17.6 2.49 5.86 0.214 
7 4.48 0.083 1.192 17.8 2.54 5.86 0.211 

1 

8 4.48 0.083 1.193 17.8 2.55 5.86 0.211 
1 13.99 0.353 1.034 3.4 1.08 14.10 0.382 
2 13.87 0.355 1.035 3.2 1.07 13.97 0.379 
3 13.74 0.356 1.045 3.3 1.08 13.86 0.384 
4 13.62 0.360 1.058 3.4 1.08 13.73 0.389 
5 13.41 0.363 1.069 3.4 1.08 13.52 0.391 
6 12.45 0.376 1.140 3.7 1.10 12.57 0.414 
7 12.10 0.379 1.157 3.6 1.09 12.21 0.414 

2 

8 10.82 0.409 1.286 4.0 1.12 10.89 0.456 
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Table 5. Mean and standard deviation of the estimation ratios for inelastic system.  

 Horizontal direction 
(Load pattern 1) 

Vertical direction 
(Load pattern 2) 

Response d1 d2 d3 F1 d4 d5 F2 
Mean 1.02 1.04 1.09 0.98 0.77 0.92 0.90 

St. dev. 0.046 0.042 0.033 0.014 0.043 0.025 0.096 
 
5. CONCLUSIONS AND DISCUSSIONS 
 
A systematic approach has been presented for deriving the equivalent static loads for estimation of peak seismic 
response of elastic as well as inelastic structures for given design response spectrum. Multiple dominant modes 
are incorporated in the form of weighted sum of the elastic vibration modes. Several sets of modal combination 
coefficients are determined by considering phase differences of the peak modal responses. The peak response of 
an elastic system can be computed directly by applying the equivalent external loads; and that of an inelastic 
system is estimated by conducting pushover analysis until the demand and capacity diagrams intersect.  
 
Numerical studies on a long-span arch model, of which the seismic response is dominated by two vibration 
modes, show that the proposed method has good performance in estimating the peak responses for elastic 
systems as well as inelastic systems. Although the proposed method requires eigenvalue analysis and pushover 
analysis for several load patterns, it is effective and accurate enough for estimating peak seismic responses of 
spatial structures, as an alternative tool of the time-consuming time-history analysis. 
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