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ABSTRACT: 

Results obtained from nonlinear fiber analyses (FA) and finite element analyses (FEA) for concrete-filled-tubes 
(CFT) are discussed. These analyses, based on the assumed stress-strain material curves, member slenderness, initial 
imperfections, and material and geometric nonlinearities, etc., were aimed at assessing primarily the overall behavior 
on these structural elements as a prelude to a large full-scale testing program. Some results are compared with those 
obtained from AISC (2005) or analytical equations published in the literature. Fiber and finite based results show a 
compatible correlation with the expected element behavior, which is also captured in the current 2005 AISC 
Specifications and 2005 AISC Seismic Provisions. 
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1. INTRODUCTION 
 
Fiber Element Analysis is a numerical technique which models a structural element by dividing it into a number 
of two-end frame elements, and by linking each boundary to a discrete cross-section with a grid of fibers. The 
material stress-strain response in each fiber is integrated to get stress-resultant forces and rigidity terms, and 
from these, forces and rigidities over the length are obtained through finite element interpolation functions 
which must satisfy equilibrium and compatibility conditions. 
 
There are several advantages which justify the use of fiber analysis. Some of these advantages include but are 
not limited to their ability to handle: 

• Complex cross-sections: A fiber cross-section can have any general geometric configuration formed by 
subregions of simpler shapes; geometric properties are calculated through the numerical integration. 

• Tapered elements: Since the length of the fiber is not considered, the cross-section defined at each of the 
two ends can be different, and therefore, the response can be roughly estimated. Precision can be 
increased with more integration points. 

• Complex strength-strain behavior: Since each fiber can have any stress-strain response, this technique 
allows modeling nonlinear behavior in steel members, reinforced concrete members (unconfined and 
confined concrete σ−ε), and composite members. 

• Accuracy and efficiency: Since each fiber is associated to a given uniaxial stress-strain (σ−ε) material 
response, higher accuracy and more realistic behavior effects can be captured in a fiber-based model 
than in a frame-based model, and at less computing time than for a 3D finite-based model. 

 
As described previously, the uniaxial σ−ε curve can directly account for the material nonlinearity in monotonic 
or cyclic loads or displacements, and the residual stresses in the structural steel members. However, some 
researchers have calibrated, based on experimental or analytical 3D finite-based results (i.e. Varma et al., 2004; 
Tort and Hajjar, 2007), the uniaxial σ−ε to account for additional behavior effects like: 

• Confinement effects in the concrete due to either steel reinforcement (as in RC or SRC cross-sections) 
or a steel tube (as in CFT cross-sections). Concrete confinement in CFT elements remain while the 
steel-concrete contact is hold. 
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• Local buckling in steel tubes through a degradation of the compressive σ−ε beyond the corresponding 

strain (εlb). Local buckling in CFT elements can be reached when the steel, with relatively low 
width-to-thickness ratio, is highly stressed in compression and the steel-concrete contact is lost. 

 
Stability effects through geometric nonlinearity and initial imperfections can be captured directly with the 
frame-based analysis. In turn, slip between concrete and steel have been modeled in the frame-based 
formulation by adding degrees-of-freedom (i.e. Hajjar et al., 1998, Aval et al., 2002; Tort and Hajjar, 2007). 
 
 
 
On the other hand, Finite Element Analysis (FEA) is a numerical technique which models a structural system by 
a set of appropriate finite elements (1D, 2D or 3D) interconnected at the exterior nodes, and all together covers 
the entire system as accurate as possible. Nodes will have the desired degrees of freedom which may include 
translations, rotations, and for special applications, higher order derivatives of displacements. When the nodes 
displace, they will drag the elements along in a certain manner dictated by the element formulation, so the 
displacements of any points in the element will be interpolated from the nodal displacements through the finite 
element interpolation or shape functions, which must satisfy equilibrium and compatibility conditions as well. 
 
There are several advantages which justify the use of finite element analysis. Some of these advantages include 
but are not limited to their ability to handle: 

• Complex 3D geometries: 1D, 2D or 3D elements may be used to generate any 2D or 3D shape of any 
structural system. 

• True material non-linearity: Since the analysis account for size and shape changes, true stress-strain 
“σ−ε” values are used in the calculations instead of the engineering stress-strain (s-e) values. 

• Geometric nonlinearity and initial conditions (like residuals stress or strains, out-of-plumbness, out-of 
straightness, etc.) may be included in the model. 

• Definition of surfaces in contact allows having a better understanding of the true steel-concrete 
interaction. In composite columns, for example, the normal and tangential contact interaction between 
the steel and concrete’s surfaces may allowed to account directly for effects which in fiber analysis are 
indirectly implicit in the uniaxial σ−ε. Thus, as long as the steel-concrete remain in contact, neither 
local buckling, lost of confinement, nor slip take place. Accounting for contact in finite element analysis 
may include but are not limited to their ability to handle: 
• Confinement directly provided by the normal pressure between the surfaces in contact; modification 

in the uniaxial σ−ε curve is not needed. 
• Local buckling of the steel tube is delayed until loss of normal contact takes place. 
• Slip or unbonding in concrete-steel surfaces takes place when tangential contact is lost. 
• Wear can be predicted in mechanical parts with friction or relative motion between contact surfaces, 

mainly when these are subjected to high cycle fatigue. 
 
Since the model may have a large amount of elements, computing time or resources are an important issue to 
consider; in order to obtain a good accuracy without excessive processing, the following is often recommended. 

• Symmetry or anti-symmetry conditions are exploited in order to reduce the size of the system. 
Compatibility of displacements of many nodes can be imposed via constraint relations; proper support 
constraints are imposed with special attention paid to nodes on symmetry axes. 

• The element mesh should be fine enough in order to have acceptable accuracy. To assess accuracy, the 
mesh is refined until results show little change. For higher accuracy, the elements’ aspect ratio should 
be as close to unity as possible and smaller elements can be used over the parts of higher stress gradient. 
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2. DISCUSSION AND ANALYSIS 
 
Nonlinear analyses are obviously sensitive to the assumptions in the stress-strain curves. Consequently, several 
research studies have been conducted on this topic to predict more “realistic” responses. 
 
The current AISC (2005) specification allows the use of fully-plastic stress distribution and strain compatibility 
methods to calculate the cross-section strength. The plastic distribution method (Roik and Bergmann, 1992) 
basically assumes that each component in cross-section has reached the maximum plastic stress (Figure 1). The 
assumed plastic stress in circular CFTs (0.95fc’ ) is higher than the one assumed in rectangular CFTs or SRCs 
(0.85fc’ ) to account in some fashion for a higher confinement in the circular tubes. 
 
 0.95fc’  Fy 0.85fc’  Fy 
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a) Encased SRC b) Rectangular CFT 

Figure 1. Fully-plastic stress distribution in composite cross-sections 

While very useful and accurate for design purposes, the plastic distribution approach can only match the 
ultimate strength of the cross-section. When the entire moment-curvature (or load-deformation) behavior is of 
interests, more complex uniaxial stress-strain curves are needed. These include strain compatibility approaches 
to model reinforced concrete elements (i.e. Kent and Park, 1973; Mander et. al., 1988), steel members (i.e. 
Menegotto and Pinto, 1973), concrete filled tubes (CFT) elements (i.e. Collins and Mitchell, 1990; Sakino and 
Sun, 1994; Chang and Mander, 1994; Nakahara and Sakino, 1998; Susantha et al., 2001), and 
steel-reinforced-concrete (SRC) members (similar to those used for RC and steel). 
 
The behavior of concrete under triaxial stresses was originally studied by Richart et al. in 1928 (Park and Paulay, 
1975). They observed that strength and ductility of concrete are improved under triaxial compression, and based 
on their experimental results, they proposed the following equations. 
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Where fcc’  and εcc are the confined strength and strain, respectively. fc’  and εc are the unconfined strength and 
strain, respectively. σr is the confining pressure, and k is a confining coefficient defined with the value of 4.1 
originally by Richart et al. in 1928 (Park and Paulay, 1975). Based on experimental results, an average 
confining coefficient of k=5.6 with values between 4.5 and 7.0, was obtained by Balmer in 1949 (Park and 
Paulay, 1975). 
 
Confining pressure or hoop stresses (σr) on circular RC columns can be calculated by the equation below (Park 
and Paulay, 1975), which assumes yielding limit state of the spiral steel. 
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Where D is, for this case, the diameter of the confined concrete section; s and Asp are the spacing and area of the 
steel spirals or hoops, respectively. Note that the steel are mainly subjected under uniaxial stress (σθ=Fy). 
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Adapting the last equation in circular CFT cross-sections, assuming yielding limit state of the steel tube, the 
confining pressure in the tube under biaxial stresses is given by: 
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Where D, t, L are, respectively, the outer diameter, thickness and length of the circular steel tube. Fy is the yield 
stress of the steel, and α is the tangential-to-axial stress ratio (σθ/Fy), which depends on the axial force and the 
D/t ratio. Note that, in this case, the tube is mainly subjected under biaxial stress (σθ=αFy and σz=βFy). 
 
From experimental data, Sakino and Sun calibrated the α (σθ/Fy) and β (σz/Fy) values, and assuming Von-Mises 
failure criteria and other assumptions these came up with α=0.19 and βcompression=0.89, βtension=1.08. The β values 
are also used in the σ−ε of the steel tube to account for biaxial stresses (Figure 3). Thus, based on empirical data 
and its calibration with an analytical study, Sakino and Sun (1994) proposed uniaxial σ−ε models for both 
concrete (Equation 3, Figure 2) and steel (Figure 3) for circular and rectangular CFT elements that account for 
confinement, local buckling and biaxial stresses. Equation 3 describes the σ−ε curve for concrete proposed by 
Sakino and Sun (1994), which is in terms of the effective hoop stresses (σre) and the peak concrete strength. 
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Figure 2 shows σ−ε curves obtained with the Sakino and Sun model in a 5 ksi strength concrete that is confined 
by circular and rectangular steel tubes with 50 and 100 width-to-thickness ratios (D/t, b/t). As shown in this 
figure, confinement improves strength and ductility in circular CFTs and just ductility in rectangular CFTs. This 
figure also shows a cyclic model (which was proposed by Karsan and Jirsa in 1969 and implemented in the 
OpenSees software) to account for unloading and reloading reversible loads. 
 
In turn, steel tubes can be modeled through an unsymmetrical σ−ε curve to satisfy the Von Misses yield criteria 
with biaxial stresses. Depending on the b/t ratio, local buckling in rectangular tubes can be handled by a 
descending branch of the σ−ε curve at a critical strain (εlb). A careful calibration of the experimental data is 
needed to obtain the strain εlb when local buckling takes place. This model postulates that εlb in circular tubes is 
reached at high values of strain, and therefore, local buckling effects can be neglected; this approach is tied to 
the Japanese design requirements for b/t ratios which basically preclude this failure mode. The cyclic behavior 
illustrated in Figure 3 accounts for unloading and reloading reversible loads. 
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a) Circular CFT b) Rectangular CFT 

Figure 2. Stress-strain (σ−ε) curves obtained for a 5 ksi strength concrete confined by a steel tube with different 
width-to-thickness ratios; the cyclic unloading/reloading model is schematically illustrated. 
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 a) Circular CFT b) Rectangular CFT 
Figure 3. Stress-strain (σ−ε) curves for steel tubes in CFT beam-columns; cyclic unloading/reloading rules are 
schematically illustrated, as well as local buckling where applies. 

In order to evaluate the effects of confinement in short columns, a cylinder of concrete filled into a steel tube 
was analyzed using the finite element method. The steel tube (Fy=42 ksi and D/t=240) is modeled by 20-join 3D 
solids (C3D20R), while the concrete (fc’ = 5 ksi, plain concrete σ−ε assumed) is integrated by 8-joint 3D-solids 
(C3D8R) and 6-joint wedges (C3D6). After assembling the CFT element (Figure 4.a), interaction of 
steel-concrete surfaces in contact was defined by the normal-hard contact model, which allows separation but 
avoid overclosure; a small adjustment zone was defined to avoid inaccuracy due to the numerical noise range. 
The concrete element was loaded in monotonic compression force (Figure 4.b.ii), while the tube has three 
preload cases: i) no preload in the steel tube (εs=0); ii) with a low preload compression in the steel tube such 
that the strain in the tube reach the yielding strain (εs=εy=Fy/Es); iii) with a high preload compression in the steel 
tube such that the steel tube exceed 5 times the yielding strain (εs=5εy, Figure 4.b.i). 

ε ε 
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a) Finite element model b) displaced shape (10X amplification) 
Figure 4. Finite element model of a CFT cylinder, and its displaced shape of the CFT with a preload in 
the steel tube followed by a compression force in the concrete 
 
The results of the hoop stresses in the concrete confined by the steel tube, and the corresponding σ−ε for 
confined concrete proposed by Sakino and Sun (1994) are illustrated in Figure 5. As seen in Figure 5.a, the 
concrete-steel contact in the tube increases the hoop stresses as the compression force increments; as seen in 
Figure 4.b.i, the cases with an initial preload in the steel tube produces an initial separation (or a contact delay) 
which is eventually closed as the compression in the concrete make it expand and go back in contact; however, 
as soon as the steel and concrete surfaces are in contact, the σ−ε tends to go from the plain concrete curve to the 
confined concrete curve (Figure 5.b). Notice than maximum both hoop stresses and maximum confined strength 
from FEA are very close to those estimated with the empirical equations proposed by Richart (1928). Sakino 
and Sun prediction is very similar in strength and ductility to the σ−ε curve when the tube had a high preload. 
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 a) Hoop stress vs. Normalized compression b) Uniaxial stress-strain (σ−ε) 
Figure 5. Variation of the hoop stresses with the compression force, and the uniaxial stress-strain (s-e) 
obtained from the finite element analysis. 
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Figure 6 shows results obtained from nonlinear fiber analysis for the prediction of a circular CFT beam-column 
integrated by an HSS20x0.25 steel tube (A500 Gr. B, D/t=86) filled with 5 ksi strength concrete. These results 
show envelopes of ultimate strength (as in the P-λ curves or in the P-M diagrams), and both strength and expected 
ductility when the element is subjected to lateral cyclic loads (as in the M-φ or F-∆ curves). Member slenderness, 
initial imperfections, and material and geometric nonlinearities were accounted in these analyses; confinement 
effects (through a modification in the concrete σ−ε curve as shown in Figure 2.a) and biaxial stresses (through the 
asymmetrical steel σ−ε curve as shown in Figure 3.a) are also implicit in these results. The cyclic models 
schematically shown in Figures 2.a and 3.a were taken into account when unloading and reloading cyclically. 
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Figure 6. Results from fiber element analysis for a circular CFT column (D=20”, t=0.25”, Fy=42 ksi, f’c=5 ksi) 
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CONCLUSIONS 
 
The benefits on the fiber and finite element analysis technique were briefly described. Based on these 
techniques, some results were obtained and shown emphasizing some issues in the structural behavior of 
composite cross-sections and composite beam-column elements, such as the effects due to the compressive 
force, material nonlinearity (stress-strain model), concrete confinement, steel local buckling, triaxial stresses, 
initial imperfection and geometric nonlinearity effects. Fiber-based analytical results were also compared with 
those obtained with the AISC (2005) Specification. 
 
As described previously, fiber and finite element analysis analyses are very useful techniques to predict the 
overall behavior of composite beam-column elements. However, the accuracy on the results is highly 
dependable on the stress-strain model coupled to the fibers or to the solids. Simple stress-strain models predict 
reasonably the ultimate strength; however, more complex material models should be assumed to predict 
ductility and high displacements such that damage is considered. On the other hand, most of the nonlinearity 
sources (like strength/stiffness degradation, confinement, local buckling and triaxial stresses effects) have to be 
calibrated with experimental results and/or more complex analytical techniques in order to incorporate them 
later on in the uniaxial stress-strain used in the fiber-based model. 
 
3D finite element analysis can deal with these sources in a straightforward manner. Definition of contact 
surfaces between concrete and steel allows a more realistic interaction within these materials; therefore, 
confinement, local buckling and triaxial stresses can be directly integrated in the behavior (with no influence on 
the material model). More computing resources and time will be required though. 
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