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ABSTRACT : 
The variability in the seismic demand and capacity of a steel frame having beam hinges with uncertain 
properties is investigated through Incremental Dynamic Analysis (IDA) using both Monte Carlo simulation and 
approximating techniques. The 9-story steel moment-resisting frame is modeled using parameterized 
moment-rotation relationships with quadrilinear backbones for the beam plastic-hinges. The uncertain properties 
of the backbones include the yield moment, the post-yield hardening ratio, the end-of-hardening rotation, the 
slope of the descending branch, the residual moment capacity and the ultimate rotation reached. IDA is 
employed to accurately assess the seismic performance of the model for any combination of the parameters by 
performing multiple nonlinear time history analyses for a suite of ground motion records. IDA sensitivity 
analysis reveals the yield moment and the two rotational-ductility parameters to be the most influential for the 
frame behavior. To propagate the parametric uncertainty to the actual seismic performance we employ a) Monte 
Carlo simulation with latin hypercube sampling, b) point-estimate and c) first-order second-moment techniques, 
thus offering competing methodologies that represent different compromises between speed and accuracy. The 
final results provide firm ground for challenging current assumptions in seismic guidelines on using a 
mean-parameter model to estimate the mean seismic performance and employing the well-known 
square-root-sum-of-squares rule to combine aleatory randomness and epistemic uncertainty. 
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1. INTRODUCTION 

The accurate estimation of the seismic demand and capacity of structures stands at the core of 
performance-based earthquake engineering. Still, seismic performance is heavily influenced by both aleatory 
randomness, e.g. due to natural ground motion record variability, and epistemic uncertainty, owing to modeling 
assumptions, omissions or errors. Ignoring their effect means that structures are being designed and built 
without solid data or even adequate understanding of the expected range of behavior. While guidelines have 
emerged (e.g., SAC/FEMA-350) that recognize the need for assessing epistemic uncertainties by explicitly 
including them in estimating seismic performance, this role is usually left to ad hoc safety factors or at best 
standardized dispersion values that often serve as placeholders. So, if one wanted to actually compute the 
variability in the seismic behavior due to parameter uncertainty, the question still remains: What would be a 
good way to do so? 
 
In our present work we will use Incremental Dynamic Analysis (IDA, Vamvatsikos and Cornell, 2002) to 
answer this issue as best as possible. IDA being a resource-intensive method, we will attempt to economically 
tap into its power through computation-saving methods. Efficient Monte Carlo simulation and 
moment-estimation techniques will be employed to propagate the uncertainty from parameters to the 
IDA-evaluated seismic performance offering different compromises in speed and accuracy. Using a well-studied 
steel moment-resisting frame as a testbed and focusing on the plastic-hinge modeling uncertainties, we will 
nevertheless present a general methodology that is applicable to a wide range of structures. 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
2. MODEL DESCRIPTION 
 
The structure selected is a 9-story steel moment resisting frame with a single-story basement (Figure 1) that has 
been designed for Los Angeles, following the 1997 NEHRP (National Earthquake Hazard Reduction Program) 
provisions (Foutch and Yun, 2002). A centerline model with fracturing connections was formed using 
OpenSEES (McKenna and Fenves, 2001). It allows for plastic hinge formation at the beam ends while the 
columns remain elastic. P-∆ effects were included while the internal gravity frames have been directly 
incorporated. The fundamental period of the reference frame is T1 = 2.35 sec and accounts for approximately 
84% of the total mass. Essentially this is a first-mode dominated structure that still allows for significant 
sensitivity to higher modes. Previous studies (e.g., Fragiadakis et al., 2006) have identified the yield strength of 
the hinges as the most influential parameter in a steel frame, compared to mass and stiffness. Thus the influence 
of their properties on the seismic performance of the structure will be our focus. 
 
The beam-hinges are modeled as rotational springs with moderately pinching hysteresis and a quadrilinear 
moment-rotation backbone (Figure 2) that is symmetric for positive and negative rotations (Ibarra, 2003). The 
backbone hardens after a yield moment of aMy times the nominal, having a non-negative slope of ah up to a 
normalized rotation µc where the negative stiffness segment starts. The drop, at a slope of ac, is arrested by the 
residual plateau appearing at normalized height r that abruptly ends at the ultimate normalized rotation µu. This 
complex backbone is versatile enough to simulate the behavior of numerous moment-connections, from ductile 
down to outright fracturing. Using a “base” hinge with properties aMy = 1, ah = 10%, µc = 3, ac = -50%, r = 50% 
and µu = 6, we have formed a reference frame that will serve as the basis for comparing all modified models.  

 
Figure 1 The LA9 steel moment-resisting frame   
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Figure 2 The moment-rotation relationship of the beam point-hinge in normalized coordinates  
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Table 3.1 The suite of thirty “ordinary” ground motions 
 

No. Event Station φο 1 Soil 2 M 3 R 4 (km) PGA (g) 
1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159 
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239 
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147 
4 Imperial Valley, 1979 Plaster City 135  C,D 6.5 31.7 0.057 
5 Loma Prieta, 1989 Hollister Diff. Array 255  –,D 6.9 25.8 0.279 
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174 
7 Loma Prieta, 1989 Anderson Dam Downstrm 270  B,D 6.9 21.4 0.244 
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285  B,D 6.9 22.3 0.179 
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143 

10 Imperial Valley, 1979 Cucapah 085  C,D 6.5 23.6 0.309 
11 Northridge, 1994 LA Hollywood Storage FF 360 C,D 6.7 25.5 0.358 
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270  C,D 6.9 28.8 0.207 
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24 
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27 
15 Imperial Valley, 1979 El Centro Array #13 140  C,D 6.5 21.9 0.117 
16 Imperial Valley, 1979 Westmoreland Fire Station 090  C,D 6.5 15.1 0.074 
17 Loma Prieta, 1989 Hollister South & Pine 000  –,D 6.9 28.8 0.371 
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360  C,D 6.9 28.8 0.209 
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090  C,D 6.7 24.4 0.180 
20 Imperial Valley, 1979 Chihuahua 282  C,D 6.5 28.7 0.254 
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139 
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11 
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103 
24 Loma Prieta, 1989 WAHO 000 –,D 6.9 16.9 0.37 
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2 
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186 
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042 
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269 
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21 
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638 

1 Component      2 USGS, Geomatrix soil class       3 Moment magnitude       4 Closest distance to fault rupture 

 
 
3. PERFORMANCE EVALUATION  
 
Incremental Dynamic Analysis (IDA, Vamvatsikos and Cornell, 2002) is a powerful analysis method that can 
provide accurate estimates of the complete range of the model’s response, from elastic to yielding, then to 
nonlinear inelastic and finally to global dynamic instability. To perform IDA we will use a suite of thirty ground 
motion records (Table 1) representing a scenario earthquake. These belong to a bin of relatively large 
magnitudes of 6.5–6.9 and moderate distances, all recorded on firm soil and bearing no marks of directivity. 
IDA involves performing a series of nonlinear dynamic analyses for each record by scaling it to multiple levels 
of intensity. Each dynamic analysis is characterized by two scalars, an Intensity Measure (IM), which represents 
the scaling factor of the record, and an Engineering Demand Parameter (EDP) (according to current Pacific 
Earthquake Engineering Research Center terminology), which monitors the structural response of the model. An 
appropriate choice for the IM for moderate period structures with no near-fault activity is the 5%-damped 
first-mode spectral acceleration Sa(T1,5%), while the maximum interstory drift θmax of the structure is a good 
candidate for the EDP. Using the hunt-and-fill algorithm (Vamvatsikos and Cornell, 2004) allows the use of 
only twelve runs per record to capture each IDA curve. Appropriate interpolation techniques allow the 
generation of a continuous IDA curve in the IM-EDP plane from the discrete points obtained from the dynamic 
analyses. Such results are in turn summarized to produce the median and the 16%, 84% IDA curves. 
 
Having such a powerful, albeit resource-intensive tool at our disposal, we are left with the selection of the 
alternate models to evaluate. There is obviously an inexhaustible number of variations one could try with the six 
parameters of the adopted plastic hinge, not including the possibility of having different hinge models in each 
story, or even for each individual connection. In the course of this study we chose to vary all six backbone 
parameters, namely ah, µc, ac, r, µu and aMy, uniformly throughout the structure. These parameters were varied 
individually to perform sensitivity analysis and then all together for uncertainty analysis. The results, evaluated 
using IDA, appear in the following sections. 
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4. SENSITIVITY ANALYSIS  
 
To evaluate the behavior of our model we performed a sensitivity study by perturbing each of the six backbone 
parameters independently of each other and only one at a time, by pushing it above or below its central value. 
The values aMy = {0.8,1.2}, ah = {1%, 20%}, µc = {2, 4}, ac = {-100%, -25%}, r = {20%, 80%}, and µu = {4, 8} 
were used. In each case IDA was performed to evaluate the sensitivity of the seismic performance which we 
chose to express by comparing in IM-terms the median IDA curves of the base case versus the modified ones 
appearing in Figures 3a-f. Keeping in mind that only thirty records were used to trace the median IDA curves 
shown, we should discount small differences as statistically insignificant. Thus we can safely state that a 
modified structure is better or worse-performing than the base case only when its median IDA appears at a 
reasonable distance higher or lower (in IM-terms) than the base case median. 
 
In view of the above, Figure 3a is clear cut: Increasing or decreasing the yield strength of the plastic hinges 
through aMy does indeed cause an almost equal increase or decrease, respectively, of the seismic capacity of 
most post-yield limit-states. Actually this is the only parameter whose variability is propagated practically 
unchanged through the model while the other five parameters generally show much reduced effectiveness. 
Figure 3b shows one such case where both a large increase and a decrease of the hardening slope ah seem to 
offer only a 10% respective change in global collapse capacity. On the other hand, accelerating or delaying the 
occurrence of the strength drop is of decisive importance (Figure 3c). Increasing µc to 4 has produced an almost 
20% improvement practically everywhere in the median capacities after 3% interstory drift. Reducing µc to 2 
has a -20% impact on the structural capacity as the accumulation of serious damage begins much earlier in the 
point hinges. The impact of ac is shown in Figure 3d where, as expected, reducing (in absolute terms) the 
negative slope provides benefits up to 10% while making it steeper has a 15-20% detrimental effect. The 
relatively low value of these sensitivities is a direct result of the relatively high default residual plateau; at r = 
50% it tends to trim down the effect of the negative drop, thus reducing its importance. Figure 3e shows the 
effect of r, where it appears that for a given negative drop and a relatively short plateau (µu = 6), the residual 
moment of the plastic hinge has little influence on the predicted performance of the LA9 structure. However, 
different default settings on ac and µu can easily change such results; therefore no general conclusions should be 
drawn just yet. On the other hand, for µu there can be no objection that the median IDAs are greatly influenced 
by its reduction but not significantly by its increase. A 33% ultimate ductility decrease cost the structure a 40% 
reduction in collapse capacity, while an equal improvement made no difference statistically. It seems that the 
strength loss caused by a brittle and fracturing connection will dominate the response of the building. On the 
other hand, even a substantial increase in the rotational ductility does not make much difference for this building, 
perhaps because of other effects, e.g., P-∆, taking the lead to cause collapse. In other words, even letting µu go to 
infinity, as is typically assumed by most existing models, we would not see much improvement as the building 
has already benefited from ultimate rotational ductility as much as it could.   
 
 
5. UNCERTAINTY ANALYSIS  
 
In order to evaluate the effect of uncertainties on the seismic performance of the structure we chose to vary the 
base beam-hinge backbone by assigning realistic distributions to its six parameters. Each parameter is assumed 
to be independently normally distributed with a mean equal to its default value and a coefficient of variation 
(c.o.v) equal to 0.2 for aΜy (due to its overwhelming effect) and 0.4 for the remaining five parameters. Since the 
normal distribution assigns non-zero probabilities even for physically impossible values of the parameters, e.g., 
r < 0, or ah > 1 we have truncated the distribution of each parameter within a reasonable minimum and 
maximum that satisfies the physical limits. We chose to do so by setting hard limits at 1.5 standard deviations 
away from the central value, thus cutting off only the most extreme cases. 
 
Given the parameter distributions, Monte Carlo simulation was performed using latin hypercube sampling (LHS, 
McKay et al., 1979) for N = 200 realizations of the frame. LHS is a special case of stratified sampling that 
allows efficient estimation of the quantity of interest by reducing the variance of classic Monte Carlo. The Iman 
and Conover (1982) algorithm was employed to reduce any spurious correlation appearing between the samples. 
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(a) Sensitivity to aMy                                       (b) Sensitivity to ah 
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(c) Sensitivity to µc                                      (d) Sensitivity to ac 
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Figure 3 Sensitivity of the median IDA results to the beam-hinge backbone parameters  
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Figure 4 The 200 median IDAs shown against their mean and +/- one standard deviation curves  

 
By performing IDA on each of the N samples we have obtained 30×N IDA curves and N corresponding median 
IDAs shown in Figure 4. These allow us to provide unbiased estimates of the mean and the variance of the 
median IDA curve due to the uncertainty in the parameters of the structure. Actually, as Figure 4 reveals, the 
mean of all sample medians shows a collapse capacity of 0.9g which is 0.1g lower than the base case median of 
almost 1.0g. Given the dispersion shown this difference becomes statistically significant, thus casting 
considerable doubt on the typical assumption that the mean parameter model will produce the mean seismic 
performance (e.g., Cornell et al., 2002).  
 
The Ν IDA curves can also be used to estimate the variability caused by the parameter uncertainties in the 
median capacity for each limit-state. As proposed by Cornell et al. (2002), such dispersion caused by the 
uncertainty in the median capacity will be characterized by its β-value, βU, which can be calculated directly as 
the standard deviation of the natural logarithm of the estimates of the median capacities, 
 

 
( )

1
lnln

2
%50%50

,

−
−

= ∑
N

SS aia
Uβ  (5.1) 

 
where %50

,iaS  (i = 1,2,…,N) are the estimates of the median Sa-value of capacity for a given limit-state from each 

model realization and %50ln aS is the mean of the natural logarithm of the median Sa-values of capacity.  
 
A simpler alternative to performing Monte Carlo simulation, even with the efficient LHS, is the use of 
moment-estimation methods to approximate the variability in the IDA results. These are typically based on the 
use of only a handful of runs for appropriately perturbed versions of the base case. Using functional 
approximations or moment-matching such schemes manage to propagate uncertainty from the parameters to the 
final results using only a few IDA runs. Specifically we used the point estimate method (PEM) of Rosenblueth 
(1981) and the first-order-second-moment method (FOSM, e.g. Baker and Cornell, 2003). For uncorrelated and 
unskewed random variables, both methods need only two IDA evaluations per parameter, practically resembling 
the sensitivity results (Figure 3) spaced one standard deviation away from the mean value of each parameter.  
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Figure 5 The values of βU estimated using Monte Carlo 
simulation, FOSM and Rosenblueth’s PEM given θmax  

Figure 6 The values of βU, βR, βRU compared against the 
SAC/FEMA approximation SRSS

RUβ  given θmax 
 
The estimates of βU obtained by the three methods appear in Figure 5. In all cases the epistemic uncertainty 
smoothly rises from a zero value in the elastic range (reasonable, as all modifications to the plastic hinges are 
post-yield) and slowly increases up to its collapse-level value. This is estimated to be 0.25 by Monte Carlo, 
while both PEM and FOSM manage to get quite close, slightly overpredicting the dispersion at collapse at 0.30 
and 0.35 respectively, showing errors of 20-40%. Obviously, at least Rosenblueth’s PEM can provide a 
reasonable estimate to βU using only 2x6+1 = 13 sample points, rather than 200 for LHS. That is almost a 
15-fold reduction in computations at the cost of only 20% error. A further attempt at reducing the computational 
load can be found in Fragiadakis and Vamvatsikos (2008), using static pushover analyses rather than IDA. 
 
The epistemic uncertainty βU is competing against the dispersion due to record-to-record aleatory randomness of 
Sa(T1,5%) given the EDP θmax. This dispersion is also important for the performance evaluation of structures and 
similarly represented by its β-value (SAC/FEMA 2000), i.e. by the standard deviation the natural logarithm of 
the IM given the EDP, which can also be calculated from the fractile IDAs as  
 

 %16%50 lnln aaR SS −=β  (5.2) 
 
where Sa

50% and Sa
16% are the 50% (median) and 16% values of Sa(T1,5%)-capacity. Since we are interested in 

the lower values of capacity, it makes sense to estimate any β-value using the median and the lower fractile 
(16%) rather than the higher one (84%). 
 
Both the epistemic uncertainty βU and the aleatory randomness βR contribute to the value of the total dispersion 
βRU caused by the record-to-record randomness and the model uncertainty. This is often directly used, e.g., in 
the SAC/FEMA framework, to assess performance in the presence of uncertainty (Cornell et al. 2002). Since we 
have available the full IDA data from the Monte Carlo simulation, we can estimate βRU directly from the 200 
samples times the 30 IDA curves computed. Alternatively, SAC/FEMA approximates βRU as the 
square-root-sum-of-squares (SRSS) of βR and βU, an approximation which is usually taken for granted:   
 

 22
UR

SRSS
RU βββ +=  (5.3) 

 
Such a value for every limit-state, or value of θmax, serves as a useful comparison of the relative contribution of 
randomness and uncertainty to the total dispersion as shown in Figure 6. In general, the high βR overshadows the 
lower βU, especially since the latter is produced by a c.o.v of only 0.2 to 0.4 in the parameter values resulting to 
a maximal value of 0.25 for βU. The record-to-record variability is higher for any limit-state, ranging from 0.30 
up to 0.40. Finally we see that the SRSS estimate of βRU is very close to its value estimated by LHS. On average 
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Eqn 3.3 underpredicts the actual βRU the error is in the order of 5% or less, except for drifts within 0.05 to 0.08 
where the error grows to almost 20%. For all practical purposes, the SRSS rule for combining aleatory 
randomness and epistemic uncertainty can be considered accurate for such a structure. 
 
 
6. CONCLUSIONS  
 
The epistemic uncertainty in the seismic demand and capacity of a 9-story steel moment-resisting frame with 
non-deterministic beam-hinges has been estimated using IDA. Monte Carlo simulation with latin hypercube 
sampling has been employed as the primary means to propagate the uncertainty from the model parameters to 
the seismic performance, while simplified methods based on point-estimate methods and first-order 
second-moment techniques have also been proven to allow accurate estimation at a fraction of the cost of 
simulation. All in all the epistemic uncertainty in beam-hinges is shown to be an important contributor to the 
overall dispersion in the performance estimation as well as a key point that raises issues regarding the validity of 
current assumptions in performance evaluation. The classic notion that the mean-parameter model produces the 
mean seismic demand and capacity has been disproved. Additionally the simple square-root-sum-of-squares rule 
for the combination of aleatory randomness with epistemic uncertainty has been proven to be accurate enough 
for some limit-states but significantly off the mark for others. However, as a general conclusion, both 
assumptions are still reasonable accurate for practical applications. 
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