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ABSTRACT 
 
Probabilistic seismic capacity analysis (PSCA) plays an important role in the field of seismic performance 
evaluation, seismic reliability analysis, seismic fragility analysis, and seismic risk analysis of civil engineering 
structures. In general, PSCA has two levels of research context: global PSCA and local PSCA. The local PSCA 
has been studied by numerous research programs; however, the global PSCA has just recently been paid 
attention to in the field of earthquake engineering and structural engineering. In this paper, in order to build 
global probabilistic seismic capacity model (GPSCM) of structures considering random system properties, a 
stochastic pushover analysis (SPA) method is developed, which combines four kinds of approximating methods 
for estimating statistical moments of complex random function with deterministic pushover analysis. The four 
random analysis methods include mean value first order second moment (MVFOSM) approach, Monte Carlo 
simulation (MCS) approach, improved point estimation approach, and Zhou-Nowak numerical integration 
approach. The methodology proposed is applied in R.C. frame structure. A three-bay and five-storey plane R.C. 
frame is taken as an example in case study, the global seismic capacity curves of the structure corresponding to 
four levels of limit states are derived. It is demonstrated by this example that the approach proposed in this 
paper is an efficient and accurate tool for global probabilistic seismic capacity analysis of structures. 
 
KEYWORDS: Stochastic Pushover Analysis, Global Seismic Capacity, MVFOSM Method, MCS Method, 
Point Estimation Method, Zhou-Nowak Numerical Integration Method 
 
1. INTODUCTION 
 
Probabilistic seismic capacity analysis (PSCA) plays an important role in the field of seismic performance 
evaluation, seismic reliability analysis, seismic fragility analysis, and seismic risk analysis of civil engineering 
structures. Recently, it has been introduced into the new-generation Performance Based Earthquake Engineering 
(PBEE) proposed by PEER as one of its four building blocks (Moehle & Deierlein, 2004).  
PSCA has two levels of research context: global PSCA and local PSCA. The local PSCA has been studied by 
numerous research programs; however, the global PSCA has just recently been paid attention to in the field of 
earthquake engineering and structural engineering. Actually, global PSCA is more difficult than local PSCA. 
First, the global seismic capacity of structures has many influencing factors, such as: structural configuration, 
structural dynamic properties (stiffness and damping), geometric sizes of structural elements, constitutive 
relationships of structural materials, modeling uncertainty of structures, and so on. Second, all the influencing 
factors mentioned above have multi-scale characteristics. In fact, they can be classified into five scales, i.e., 
material scale, section scale, element scale, substructure scale and system scale. The propagation of the 
uncertainties across the different levels of scales makes global PSCA very difficult to implement. Third, these 
influencing factors may be dependent on each other. Forth, the global performance of structures is generally 
discretized into multiple levels. For example, in the common practice in earthquake engineering, the damage 
states are usually grouped into five discrete levels: intact, minor damage, moderate damage, severe damage, and 
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collapse. It is difficult to clarify the limit values of different performance levels. Fifth, the global seismic 
capacity of structures behaves nonlinearity, especially during the stages of severe damage and collapse. Last, it 
usually needs numerical analysis method in global PSCA. However, the global seismic capacity of structures is 
a highly implicit function of the basic random variables. Therefore, it is difficult to derive the statistics of the 
random global seismic capacity of structures. 
To overcome the difficulties mentioned above, this paper develops a stochastic pushover analysis method 
combining four kinds of statistical moment estimating methods, i.e., MVFOSM method, MCS method, point 
estimation method and Zhou-Nowak numerical integration method, with deterministic pushover analysis 
approach driven by a new force controlling method. The proposed methodology is then applied in R.C. frame 
structures. A three-bay and five-storey plane R.C. frame is taken as an example in case study, the probabilistic 
models and their corresponding fragility curves of the global seismic capacities of the structure corresponding to 
four levels of limit states are derived. 
 
2. APPROXIMATE METHODS FOR ESTIMATING STATISTICAL MOMENTS OF COMPLEX 
RANDOM FUNCTIONS 
 
2.1. Overview 
Let us denote by Cθ the global seismic capacity of structures, e.g., the maximum inter-storey displacement angle 
(ISDA). It is a nonlinear function of the basic random variables X: 

 1 2( ) ( , , , )nC g g X X Xθ = =X  (2.1) 
Generally, g(X) is a complex and implicit function of X. The kth central moment of Cθ is obtained by 

 1 1 1( ) ( , , ) ( , , )k k
kC n n nE g g x x f x x dx dx

θ
μ

+∞ +∞

−∞ −∞
⎡ ⎤= =⎣ ⎦ ∫ ∫ XX  (2.2) 

where， [ ]E  is the expectation operation, 1( , , )nf x xX  is the joint probability density function (JPDF) of X. 

The mean value Cθ
μ  and variance 2

Cθ
σ  of Cθ  are 

 [ ]( )C E g
θ

μ = X  (2.3) 

 [ ]( ) [ ]22 2 2( ) ( ) ( ) ( )C E g E g E g E g
θ

σ ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦
X X X X  (2.4) 

Unfortunately, due to the implicit and complex characteristics of g(X), it is difficult to directly solve the 
quadrature in Eqs. (2.2) to (2.3). Alternatively, some approximate methods for estimating statistical moments of 
complex functions are introduced. The approximation strategies can be divided into three categories: 
(1) Approximate analytical methods. The Taylor series expansion of the function is the most frequently used. 
The well-known mean value first order second moment (MVFOSM) method belongs to this category, in which 
the function is expanded around the mean value point of the basic random variables with first order series 
function, and it only needs the first second moments information of the basic random variables to propagate the 
uncertainty. 
(2) Numerical simulation methods. Monte Carlo simulation (MCS) method and its various variance-reduction 
techniques perhaps are the most rigorously employed. 
(3) Numerical integration methods. The point estimation method originally proposed by Rosenblueth (1975) and 
the numerical integration approach developed by Zhou and Nowak (1988) enter into this category. 
 
2.2. MVFOSM Method 
In MVFOSM method, the random function is linearly expanded at the mean-value point of the basic variables: 

 ( ) ( ) ( )Tg g g≈ +∇ ⋅ −ΜX Μ X Μ  (2.5) 

where, 
1 2

[ , , , ]
n

T
X X Xμ μ μ=M  is the mean value vector of X , ij i j n n

ρ σ σ
×

⎡ ⎤= ⎣ ⎦Σ  is the covariance matrix 

of X , T denotes the transpose of a matrix. 
Then, we can get the first two moments approximation of ( )g X : 

 ( )C g
θ

μ ≈ M  (2.6a) 
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 2 T
C g g
θ

σ ≈ ∇ ⋅ ⋅∇M MΣ  (2.6b) 
 
2.3. MCS Method 
Monte Carlo simulation can be used to estimate the mean value and standard deviation of a random function. 
Assume that a sample set of n input vectors has been generated, say (1) ( ){ , , }nx x . The usual estimators of the 
first two moments of Cθ  respectively read: 

 ( )( )

1

1ˆ
n

i
C

i
g

nθ
μ

=

≈ ∑ x  (2.7a) 

 ( ) 22 ( )

1

1ˆ ˆ
1

n
i

C C
i

g
nθ θ

σ μ
=

⎡ ⎤≈ −⎣ ⎦− ∑ x  (2.7b) 

 
2.4. Point Estimation Method (PEM) 

Point estimation method (PEM) was proposed by Rosenblueth (1975) to approximate the lower-order moments 
of functions of random variables. It is a special case of numerical quadrature based on orthogonal polynomials. 
For normal variables, it corresponds to Gauss-Hermite quadrature. Zhao and Ono (2000) introduced a new point 
estimation method based on Rosenblatt transformation (Hohenbichler & Rackwitz, 1981) in which the 
numerical quadrature is completed in standard normal space. Unfortunately, Rosenblatt transformation cannot 
deal with the case of random variables with given marginal distributions and correlation information. We herein 
introduce Nataf transformation (Liu & Der Kiureghian, 1986) into Zhao-Ono point estimation method to replace 
Rosenblatt transformation. 
For a single-variable function ( )C g Xθ = , the kth central moment of the function is estimated by 

 1

1
( 2 )

m
j k

kC j
j

w
M g T x

θ π
−

=

⎡ ⎤= ⎣ ⎦∑  (2.8) 

where, jx  is the Gauss-Hermit integration point, i.e., estimating point; jw  is the corresponding weight. 

For a multi-variable function ( )C gθ = X , two function approximation approaches are used: 

 
1

( )
n

i

i

ZC g Z
Zθ

=

⎛ ⎞
′≈ = ⎜ ⎟⎜ ⎟
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∏μ

μ

X  (2.9) 

 
1

( ) ( )
n

i
i

C g Z Z Zθ
=

′′≈ = − +∑ μ μX  (2.10) 

in which, 
 1( ) ( , , , , )i nZ g g μ μ μ= =μ μ  (2.11) 

 1
1 2 1 1( ) ( ) ( , , , , , , , )i N i i i i i nZ g T G G u u u u u uμ μ μ μ μ

−
− +⎡ ⎤= = =⎣ ⎦u u  (2.12) 

where, 1()NT −  denotes inverse Nataf transformation; μ  represents the vector in which all the random 
variables take their mean values; iu  represents the vector in which only iu  is a random variable, while other 
variables take the corresponding transformed values of their mean values in standard normal space; ( )ju j iμ ≠  

is the jth element of the transformed vector μu  who corresponds the vector μ  in standard normal space u ; 
1( ) [ ( )]NG g T −=u u  is the formulation of random function ( )g x  in standard normal space based on Nataf 

transformation. 
Based on the product-rule as shown in Eq. (2.9), the mean value and the kth central moment of the function can 
be estimated: 

 
1

i
n

Z
C

i

Z
Zθ

μ
μ

=

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
∏μ

μ

 (2.13a) 
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Based on the non-product rule as shown in Eq. (2.10), the mean value and variance of the function can be 
estimated: 

 
1

( )
i

n

C Z
i

Z Z
θ

μ μ
=

≈ − +∑ μ μ  (2.14a) 

 2 2

1
i

n

C z
i

θ
σ σ

=

≈∑  (2.14b) 

In Eqs. (2.13) and (2.14), iμ  and iσ  are mean value and standard deviation of iG  by using point-estimation 
of single-variable function. 
 
2.5. Zhou-Nowak Numerical Integration Method (NIM) 
For the independent standard normal random vector 1 2( , , , )nZ Z Z=Z , Zhou and Nowak (1988) proposed a 
special numerical integration method for directly estimating the statistical moments of random function g(Z). 
The integration points 1 2( , , , )j j njz z z  and their corresponding weights jw  are listed in Table 2.1. 
 

Table 2.1 Estimating points and weights for Zhou-Nowak numerical integration approach 
Point 

number 
N 

Integration points 

1( , ... )i i niz z=Z  

Weight factors 

jw  

1 ( ,0,0,0, 0) n=Z  1
1=

1
w

n+
 

2
1 ( 1)( 1)( , ,0,0, 0) n n
n n

+ −
= −Z  2

1=
1

w
n+

 

3
1 ( 1) ( 1)( 2)( , , ,0, 0) 

( 1) ( 1)
n n n

n n n n
+ + −

= −
− −

Z  
3

1=
1

w
n+

 

…  … 
1 ( 1) ( 1) 1( , , , ) 

( 1) ( 1)( 2) 2n
n n n

n n n n n
+ + +

= − − −
− − −

Z  n
1=

1
w

n+
 

1n+  

1
1 ( 1) ( 1) 1( , , , )

( 1) ( 1)( 2) 2n
n n n

n n n n n+

+ + +
= − − − −

− − −
Z  

1
1

1n+w =
n+

 

1 1 ( , 0,0,0, 0) n n+= − =Z Z  1 1
1
2nw w
n+= =  

2 2 (0, ,0,0, 0)n n+= − =Z Z  2 2
1
2nw w
n+= =  

… … 
2n  

(0,0,0,0, )n n n n+= − =Z Z   
n

1
2n nw w

n+= =  

(0,0,...,0)=Z  
2

2jw
n

=
+

 

( 2,0,..., 0)n= ± +Z * 2

4
2( 2)j

nw
n
−

=
+

 22 1n +  

2 2( , ,...,0)
2 2

n n+ +
= ± ±Z * 2

1
( 2)jw
n

=
+

 

* Points include all possible permutations in coordinates 
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Using the abscissas and weights in Table 2.1, the kth central moment of random function Cθ = g(Z) is estimated 
by 

 ( )1 2 1 2
1

( , , , ) , , ,
m

k k
kC n j j j ij

j

E g Z Z Z w g z z z
θ

μ
=

⎡ ⎤= ≈⎣ ⎦ ∑  (2.15) 

For random function ( )C gθ = X  in general random space, the inverse Nataf transformation 1( )NT −=X Z  is 
applied to result in, 

 ( )1 1 1
1 2 1 2

1

( , , , ) ( ), ( ), , ( )
m

k k
kC n j N j N j N ij

j

E g X X X w g T z T z T z
θ

μ − − −

=

⎡ ⎤= ≈⎣ ⎦ ∑  (2.16) 

Based on Eq. (2.16), the mean value and variance of Cθ  can be obtained by Eq. (2.3) and Eq. (2.4). 
 
3. STOCHASTIC PUSHOVER ANALYSIS CONSIDERING RANDOM SYSTEM PROPERTIES 
 
In earthquake engineering practice, the global performance of structures is usually discretized into multiple 
levels. For example, five levels of damage states are usually adopted, i.e., intact, minor damage, moderate 
damage, severe damage, and collapse. However, how to characterize the limit values of consecutive damage 
states has been remaining a difficult problem due to the large uncertainty in modeling and statistical analysis. 
In this paper, the conventional pushover analysis is improved to determine the global capacity limiting values 

 ( 1,2,3,4)iC iθ = . A new force control technique is introduced to set up the relationships between 

 ( 1,2,3,4)iC iθ =  and the total base shear V, by adding lateral load to the structure increasingly, until V is equal 
to the corresponding levels of the base shear ( 1,2,3,4)iV i = , as shown in Figure 1. 
 

 
Figure 1 Sketch diagram of force-controlled pushover analysis 

 
In Chinese seismic design code of buildings (GB50011-2001), three levels of seismic fortification for building 
structures are specified, which can be summarized as: do not be damaged under minor earthquake, can be 
repaired under moderate earthquake, and do not collapse under major earthquake. The moderate earthquake is 
the basic intensity I0 of the designated site, whose exceedance probability in 50yrs is 10%. The exceedance 
probability in 50yrs of the minor earthquake is 63.2%, whose earthquake intensity is Id - 1.55, where Id is the 
fortification intensity. The exceedance probability in 50yrs of the major earthquake is 2%, whose earthquake 
intensity is Id + 1. 
The intensities of minor, moderate and major earthquakes can be directly used to control the lateral force added 
to the structure corresponding to 1Cθ , 3Cθ  and 4Cθ . To present the lateral force corresponding to 2Cθ , another 
level of earthquake fortification intensity, named as sub-moderate earthquake, or frequent earthquake, is 

Cθ  

V 

V4 
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introduced in this paper, whose intensity takes the mean value of minor earthquake intensity and moderate 
earthquake intensity: 

 [ ]( 1.55)
 0.8 

2
d d

d

I I
I I

− +
= = −  (3.1) 

Based on Chinese seismic design code of buildings (GB50011-2001), the relationships between the lateral 
seismic factors  ( 1,2,3,4)i iα =  and ( 1,2,3,4)iC iθ =  are listed in Table 3.1. 
 

Table 3.1 Relationships between iI , iα  and iCθ  

iα  Earthquake 
levels 

iCθ  iI  
7dI =  8dI =  9dI =  

minor 
earthquake 

1Cθ  1.55dI −  0.08 0.16 0.32 

frequent 
earthquake 

2Cθ  0.8dI −  0.12 0.23 0.47 

moderate 
earthquake 

3Cθ  dI  0.23 0.45 0.90 

major 
earthquake  

4Cθ  1dI +  0.50 0.90 1.40 

 
Using  ( 1,2,3,4)i iα =  in Table 2, the lateral seismic force on the jth floor for each seismic level can be 
determined by 

 
3

,  ( 1,2,3,4) ( 1,..., )i j
ij

F
F i j n

α
α

= = =  (3.2) 

where, jF  is the lateral seismic force on the jth floor under fortification intensity Id , n is the number of 
structural storeys. 
The controlling lateral base shear  ( 1,2,3,4)iV i =  is obtained by 

 
1

,  ( 1, 2,3, 4)
n

i ij
j

V F i
=

= =∑  (3.3) 

The pushover analysis under the lateral load ijF  is carried on until   ( 1,2,3,4)iV V i= = , and then 

 ( 1,2,3,4)iC iθ =  can be obtained from the pushover curve. 
 

 
Figure 2 Sketch diagram of stochastic pushover analysis 

Median Pushover curve 

Logarithm normal distribution 
V 

 
Cθ  

 
iC
θ

 

iV  
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The above-mentioned procedure can only derive the deterministic limiting values of the global seismic capacity 
of structures. Due to the random system properties, the limiting values of the global seismic capacity of 
structures behaves random dispersion in nature, as shown in Figure 2. 
To consider random structural properties in pushover analysis, we herein propose a stochastic pushover analysis 
approach, which combines four approximate random analysis methods introduced in section 2, namely, 
MVFOSM method, MCS method, point estimation method and Zhou-Nowak numerical integration method, 
with the force-controlled pushover analysis method stated above. In this new approach, the global capacity 
measure Cθ  of structures is assumed to be a function of basic random variables. Each time that the function is 
evaluated during the estimating the statistical moments of Cθ , the force-controlled pushover analysis is run for 
one time. 
For stochastic pushover analysis based on MVFOSM method, because of Eq. (2.6b), it needs finite element 
response sensitivity analysis. The finite element reliability analysis module of OpenSees (Haukaas & 
Kiureghian, 2007) is utilized to compute the statistical moments of Cθ  by direct differential method of 
response sensitivity analysis. 
For stochastic pushover analysis based on MSC method, the random samples of the basic variables are firstly 
generated, and then, the random samples of finite element models of structures are obtained. The force 
controlled pushover analysis is then applied for each structural sample, and the statistical moments of 

 ( 1,2,3,4)iC iθ =  are estimated by Eq. (2.8). 
For stochastic pushover analysis based on point estimation method，we should choose Gauss-Hermit estimating 
points and weights at first, and then, the structural samples are obtained according to the strategy of PEM. The 
force controlled pushover analysis is carried on for each structural sample. The statistical moments of 

 ( 1,2,3,4)iC iθ =  are then approximated by product rule in Eq. (2.13) and non-product rule in Eq. (2.14), 
respectively. 
For stochastic pushover analysis based on Zhou-Nowak numerical integration approach, we should also select 
the estimating points and weights according to Table 2.1 at first, and then, the structural samples are obtained 
according to the strategy of this approach. The force controlled pushover analysis is again taken for each 
structural sample, and the statistical moments of ( 1,2,3,4)iC iθ =  are then estimated by Eq. (2.16). 
 

4. PROBABILISTIC MODEL OF GLOBAL SEISMIC CAPACITY OF STRUCTURES 
 
The probabilistic seismic capacity model of structures is defined as a conditional probability of by seismic 
demand Dθ  exceeding the capacity Cθ , given the specific value of seismic demand: 

 ( )CF d P C D D d
θ θ θ θ θ θ= ⎡ ≤ = ⎤⎣ ⎦  (4.1) 

where, Dθ  is the global seismic demand parameter with the same unit as capacity parameter, e.g., the maximum 

ISDA; dθ  is the given value of demand parameter. 
The model in Eq. (4.1) is also termed as seismic fragility of structures. It has been supported by numerous 
research programs that the fragility can be modeled by a lognormal cumulative distribution function: 

 
ln

( ) C
C

C

d
F d θ

θ

θ

θ
θ

λ
ζ

⎛ ⎞−
= Φ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.2) 

where, Cθ
λ  and Cθ

ζ  are mean value and standard deviation of ln( )Cθ , respectively. They are related to mean 

value and standard deviation of Cθ  as 
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2

ln
1

C
C

C

θ

θ

θ

μ
λ

δ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (4.3) 

 ( )2ln 1C Cθ θ
ζ δ= +  (4.4) 

where, Cθ
μ  and Cθ

δ  are mean value and coefficient of variation of Cθ , respectively. 

The median value Cm
θ

 of Cθ  is the exponent of Cθ
λ : 

 exp( )C Cm
θ θ

λ=  (4.5) 
Therefore, the probabilistic model of seismic capacity can be re-written as a simpler formulation: 

 
ln( / )

( ) C
C

C

d m
F d θ

θ

θ

θ
θ ζ

⎛ ⎞
= Φ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.6) 

 
5 APPLICATION OF THE METHODOLOGY IN A R.C. FRAME STRUCTURE 
 
A three-bay and five-storey R.C. frame structure, as shown in Figure 3, is taken as the example in this case study. 
It is designed according to Chinese seismic design code of buildings (GB50011-2001) with fortification 
intensity Id = 8. 
 

 
 

Figure 3 Three-bay and five-storey R.C. frame 
 
For simplicity, only the random material properties are considered, which include six basic random variables: 
yield strength yf  and initial elastic modulus E  of steel; compressive strength cf , crushing strength crf , strain 

cε  at compressive strength, and strain cuε  at crushing strength of concrete. The statistics are shown in Table 
5.1. All variables are assumed to follow normal distribution, and to be independent on each other. 
 

Table 5.1 Statistics of basic random variables 
Distribution parameters Distribution parameters Variables Mean value Std Variables Mean value Std 

2(N/mm )yf  384.80 28.59 2(N/mm )crf  27.32 4.44 
2(N/mm )E  204000 2040 cε  0.0022 0.000308 
2(N/mm )cf  26.10 4.44 cuε  0.021 0.00274 

20.1KN/m 

3.3m 

3.3m 

3.3m 

3.3m 

4.4m 

6.0m 2.4m 6.0m

F5 

F4 

F3 

F2 

F1 

23.3KN/m 

23.3KN/m 

23.3KN/m 

23.3KN/m 
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The values of , ( 1,2,3,4; 1,2,3,4,5)ijF i j= =  and ( 1,2,3,4)iV i =  are listed in Table 5.2. 

 
Table 5.2 Lateral controlling load Fij and corresponding base shear 

Fij/KN i  Fi1 Fi2 Fi3 Fi4 Fi5 
Vi/KN 

1 10.898 31.602 52.452 69.014 53.356 217.322 
2 15.666 45.428 75.400 99.208 76.699 312.401 
3 30.514 88.486 146.866 193.239 149.397 608.501 
4 61.028 176.971 293.731 386.478 298.794 1217.002 

 
Stochastic pushover analysis with four random analysis methods are applied to estimate the statistics of the 
global drift capacity of the structure, the computed results are shown in Table 5.3. 
 

Table 5.3 Statistics of the global drift capacities 

Methods Performance levels Cθ
μ  Cθ

σ  Cm
θ

 Cθ
ζ  

Minor damage 0.04371 0.00103 0.04371 0.02361 

Moderate damage 0.01489 0.00213 0.01472 0.14282 

Severe damage 0.00413 0.00015 0.00412 0.03631 
MCS 

Collapse 0.00250 0.00005 0.00252 0.02002 

Minor damage 0.05469 0.01068 0.05371 0.19351 

Moderate damage 0.01487 0.00261 0.01462 0.17422 

Severe damage 0.00411 0.00018 0.00411 0.04381 

PEM 

(product rule ) 

Collapse 0.00249 0.00005 0.00252 0.02002 

Minor damage 0.05274 0.00129 0.26861 0.26821 

Moderate damage 0.01504 0.00236 0.01492 0.15472 

Severe damage 0.00413 0.00024 0.00412 0.05811 

PEM 

(Non-product 
rule ) 

Collapse 0.00250 0.00004 0.00251 0.00402 

Minor damage 0.05162 0.01380 0.11421 0.63221 

Moderate damage 0.01504 0.00236 0.01492 0.11932 

Severe damage 0.00413 0.00024 0.00411 0.05071 

Zhou-Nowak 
numerical 
integration 
approach 

Collapse 0.00250 0.00013 0.00252 0.05202 

Minor damage 0.03804 0.00060 0.03801 0.03601 

Moderate damage 0.01464 0.00030 0.01461 0.03152 

Severe damage 0.00412 0.00013 0.00411 0.02051 
MVFOSM 

Collapse 0.00250 0.00009 0.00251 0.01582 

 

From Table 5.3, we can see that the results of stochastic pushover analysis method based on different 
approximating methods are approaching to each other; however, there exist some inconsistence in the results of  
collapse capacities, since the structure has gone into a highly nonlinear range. 
Using the statistics in Table 5.3 and Eq. (4.2) or (4.6), the global seismic capacity fragility curves can be 
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obtained, as shown in Figure 4. From this figure, we can assess the failure probability of different performance 
levels under a given seismic demand level. 
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Figure 4 Fragility curves of global seismic capacities of the structure (MCS method) 

 
6. CONCLUSION 
 
This paper proposes a stochastic pushover analysis method for probabilistic seismic capacity analysis of 
structures, which combines four kinds of methods for estimating statistical moments of random function, 
namely MVFOSM method, MCS method, point estimation method (PEM) and Zhou-Nowak numerical 
integration method (NIM), with a force-controlled pushover analysis method, The developed methodology is 
applied in R.C. frame structures. A three-bay and five-storey plane R.C. frame is taken as an example in case 
study, the global seismic capacity curves of the structure corresponding to four levels of limit states are derived. 
It is demonstrated by this example that the approach proposed in this paper is an efficient and accurate tool for 
global probabilistic seismic capacity analysis of structures. 
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