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ABSTRACT : 

Strength-reduction factors have been studied for firm ground and soft soils considering site effects. 

Soil-structure interaction has been recently accounted for by the authors of this work. One of these factors was 

investigated for a single elastoplastic structure with a flexible foundation excited by vertically propagating shear 

waves. The concepts for fixed-base yielding systems were extended to account for soil–structure interaction by 

using the simplified reference model and a nonlinear replacement oscillator proposed by the writers. This work 

is focused on a simplified procedure for practical damage analysis of structures considering the soil-structure 

interaction effects. A damage model based on maximum displacement and dissipated energy under monotonic 

loading is adopted, with the effects of cyclic load reversals being estimated by using a modified Park-Ang index. 

To simplify the consideration of the soil-structure interaction effects, an equivalent fixed-base oscillator with the 

same yield strength and energy dissipation capacity as the actual flexible-base structure is applied. Numerical 

results are presented in terms of dimensionless parameters for their general application, using a set of 

appropriate earthquake motions to ensure generality of conclusions. The significance of soil-structure 

interaction in the structural performance is elucidated and the adequacy of the approach proposed is examined 
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1. INTRODUCTION  

It is a practice to account for nonlinear seismic response of building structures by using strength reduction 

factors. These factors are the ratio between the structural resistance for elastic behavior and the one required for 

a given ductility. The most accepted reduction rule is due to Veletsos and Newmark (1960) that was improved 

by Newmark and Hall (1973) under the assumption that the peak elastic and inelastic displacements are equal in 

the long-period range. Regarding firm ground and soft soil, many efforts have been made to develop several 

rules that relate the yielding strength of nonlinear models with the corresponding linear elastic one (Miranda and 

Bertero, 1994; Miranda and Ruiz-García, 2002). These strength ratios strongly depend on site effects, especially 

on the ratio between the fundamental period of the structure and the dominant period of the site (Miranda, 1993). 

There is a site-dependent reduction rule that is more general to be applied to a wide variety of soil conditions 

(Ordaz and Pérez-Rocha, 1998). According to this rule, when the structure period is close to the site period, the 

ratio can be significantly higher than the value predicted by the Veletsos-Newmark rule, which is equal to the 

structural ductility. A work by Avilés and Pérez-Rocha (2005) presented a site-dependent rule that accounts for 

soil-structure interaction effects. This rule was developed by using a nonlinear replacement oscillator which 

accounts for a single elastoplastic structure with a flexible foundation excited by shear waves. Typical site 

effects observed for the rigid-base condition are affected by soil-structure interaction. 

In the performance-based seismic design it is not enough to account only for the strengths required for a given 

ductility. The level of structural damage has been recognized as a measure of cumulative dissipation of energy 

along with the maximum demand of plastic deformation. Several damage models have been developed to 

evaluate the structural performance assuming the structure as rigidly supported (Bozorgnia and Bertero, 2003). 

The most recognized involve the maximum and cumulative demand of plastic deformation without 

soil-structure interaction effects. According with Fajfar (1992) the structural performance depends not only on 

the maximum displacement demand, but also on the cumulative damage resulting from low-frequency fatigue, 
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modeled through the plastic hysteretic energy. One of the most recognized damage models based on these two 

criteria, maximum displacement along with dissipated energy, was proposed by Park and Ang (1985). In spite of 

this model does not supply correct results when the structure remains elastic and when the ultimate displacement 

capacity under monotonically increasing load is reached, it has been widely applied in the engineering practice.   

Soil-structure interaction has been recently accounted for in damage analysis by the authors of this work (Avilés 

and Pérez-Rocha, 2006). For this purpose, a consistent damage index, which is zero for incipient damage and 

unitary for potential structural collapse, was provided in a nonlinear replacement oscillator that represents the 

interacting system. The replacement oscillator is defined by the effective period and damping of the system and 

its global ductility (Avilés and Pérez-Rocha, 2003). Among other results, strength spectra for constant damage 

along with energy demand spectra are supplied. These results show that the approximated solution based on the 

replacement oscillator response is in excellent agreement with the exact solution. On the other hand, it can be 

pointed out that the yield strengths based on constant damage are greater than those for constant ductility, 

particularly at the resonance condition of the system. This effect, independent of soil flexibility, decreases as 

ductility decreases. The influence of soil-structure interaction on both, yield strengths and dissipated energy, is 

to increase or decrease the values with respect to the fixed-base condition, depending on the contrast between 

the structure period and the site period. A proper normalization shows that resulting energy is relatively stable in 

the whole period region and that its ductility dependence can be neglected. In this work, some results of Avilés 

and Pérez-Rocha (2006) related to strength spectra for constant damage and normalized energy spectra are taken 

in order to compute strength reduction factors for constant damage that account for soil-structure interaction.  

 

2. SOIL-STRUCTURE SYSTEM  
 
The soil-structure system considered consists of an elastoplastic one-story structure supported by a rigid 
foundation that is embedded in a viscoelastic layer overlying a homogeneous viscoelastic half-space. The 
structure is characterized by the height eH , mass eM  and mass moment of inertia eJ  about a horizontal 
centroidal axis. The natural period and damping ratio of the structure for the elastic and fixed-base condition are   

e e eT 2 M K              (2.1) 

e e e eC 2 K M              (2.2) 

where eC  and eK  are, respectively, the viscous damping and initial stiffness of the structure when fixed at 
the base. Kinematic and inertial interactions are considered. The foundation is assumed as a circular mat of 
radius R and depth of embedment D . It has mass cM  and mass moment of inertia cJ  about a horizontal 
centroidal axis. The layer is characterized by the thickness sH , Poisson’s ratio s , mass density s , shear 
wave velocity s  and hysteretic damping factor s . The parameters o , o , o  and o  are the 
corresponding properties of the half-space. The soil-structure system is subjected to vertically incident plane 
shear waves with particle motion in the horizontal plane. The horizontal displacement at the ground surface 
generated by the free-field motion is denoted by gU . However, the presence of the foundation modifies the 
free-field ground motion. This results in a foundation input motion consisting of the horizontal and rocking 
components denoted by 0U  and 0F , respectively. The degrees of freedom of the structure-foundation system 
are the relative displacement of the structure eU , the displacement of the foundation cU  relative to the 
horizontal input motion 0U , and the rocking of the foundation c  relative to the rocking input motion 0 . 
 

3. INELASTIC REPLACEMENT OSCILLATOR 

The elastic interaction effects are normally expressed by changes in the natural period eT  and damping ratio 

e  of the structure with rigid base. The resulting parameters eT  and e
  are referred to as the effective 

period and effective damping ratio of the soil-structure system, respectively. They can be determined using an 
analogy between the coupled system excited by the foundation input motion and a replacement oscillator 
excited by the free-field motion on the ground surface. The effective period and damping of the system are 
obtained such that, under harmonic excitation, the resonant period and the peak restoring force of the actual 
system are equal to those of the equivalent oscillator. The formulation and validation of this procedure is 
published elsewhere (Avilés J, Pérez-Rocha, 1996).  
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According to Avilés and Pérez-Rocha (2003), the nonlinear response of the flexible-base structure is 
approximately equal to the one of an equivalent fixed-base oscillator characterized by its effective period and 
damping for the elastic condition and its effective ductility to account for non-linearities. Let yU  and yU  
denote the yield deformations of the actual structure and the replacement oscillator, respectively, whereas mU  
and mU  indicate the corresponding maximum deformation, and eK  and eK  stand for the initial stiffness. 
Therefore, the ductility factors are defined in each case as e m yU U   and  e m yU U    . It is assumed 
that the mass is the same in both systems. Regarding that the yield strength of the equivalent oscillator is the 
same as that of the given structure, and taking into account eq (2.1), it follows that the yield deformations of 
both systems are related by 

2 2
y y e eU U T T                (3.1) 

On the other hand, the capacity of plastic deformation of both systems should be identical. Hence, by equating 
the plastic energy dissipation of both resisting elements, it is obtained that 

    yymyym RUUR
~

U
~

U
~

          (3.2) 

where yR  and yR  stand for the yielding strength of the actual structure and the replacement oscillator, 
respectively. Substituting eq (3.1) into eq (3.2), regarding that y yR R  and using the definition of e  and 

e , it is resulted that  
2 2

e e e e1 ( 1)T T                 (3.3) 

Avilés and Pérez-Rocha (2003) have shown that this expression controls the nonlinear behavior of the 
replacement oscillator. According to eq (3.3), it is clear that e e1    , which implies that the effective 
ductility of the system is lower than the allowable ductility of the structure. The effective ductility e  will be 
equal to the structural ductility e  for infinitely rigid soil and equal to unity for infinitely flexible soil. In 
addition, both resisting elements would experience the same maximum plastic deformation, but different yield 
deformation due to the reduction from eK  to eK . As the stiffness of the replacement oscillator represents the 
total stiffness of two springs in series simulating the flexibilities of the structure and foundation, part of its yield 
deformation is developed in the structural spring and the remainder in the soil spring. By substituting 

y m eU U   and y m eU U     into eq (3.1), it is found that the maximum deformation of the elastically 
supported structure, mU , and the one of the replacement oscillator, mU , are related by 

 
2 2

m e e e e mU (T T )( )U              (3.4) 

 

4. STRENGTH REDUCTION FACTOR 

It is common in design criteria the use of strength reduction factors to account for the non-linear structural 
behavior. They come from the ratio between the strength required for elastic behavior, aS (1) , and the one for 
which the ductility demand equals the target ductility, a eS ( ) , that is  

e s a aR (T , ) S (1) S ( )               (4.1) 

The shape of the R ( )   factor, at the fixed-base condition, has been extensively studied in the last years 
using recorded motions and theoretical considerations. In particular, Ordaz and Pérez-Rocha (1998) observed 
that, for a wide variety of soft soils, the strength reduction factor depends on the ratio between the elastic 
displacement spectrum, d e eS (T , ) , and the peak ground displacement, 

max
gU , in the following way 

 max
e d e e gR ( ) 1 ( 1) S (T , ) U



              (4.2) 

where 0.5  . This expression has correct limits for very short period and long periods of vibration. Note that 
he values provided by eq (4.2) can be larger than e , specially at the resonant condition. In this reduction rule, 
the period and damping dependence is properly controlled by the actual shape of the elastic displacement 
spectrum. The strength reduction factor (eq 4.1) depends on the natural period eT  the ductility factor e , and 
the soil flexibility given by the shear wave velocity s . Avilés and Pérez-Rocha (2005) have proposed a 
smooth reduction rule based on a work of Ordaz and Pérez-Rocha (1998) and the replacement oscillator 
approach. This reduction rule may be obtained by replacing eq (3.3) and (3.4) in eq (4.2), with 0.5  , that is 



The 14
th  

World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  
 

 

 
1/ 2

max
s e e e d e e gR ( ) 1 ( 1)(T T ) S (T , ) U              (4.3) 

Eq. (4.2) will yield the same result as Eq. (4.3) if the elastic displacement spectrum without SSI appearing in the 
former is replaced by the one with SSI. The two spectra d e eS (T , )  and d e eS (T , )   are used to refer to the 
actual structure and to the replacement oscillator, respectively. Avilés and Pérez-Rocha (2005) have shown that 
the use of the factor based on the later provides excellent results. A more accuracy results can be obtained if the 
reference displacement 

max
gU , in the fixed-base condition, is the total displacement of the structure discounting 

the structure deformation. According to eq (3.1), for elastically supported structures, this new reference 
displacement becomes 

max max 2 2
g g e eU U (T T )           (4.4) 

 

In view of the many uncertainties involved in the definition of this factor, it is judged that Eqs. (4.2) and (4.4) 
are appropriate for design purposes.  

 

 

5. DISSIPATED HYSTERETIC ENERGY AND CONSISTENT DAMAGE INDEX 
 

The number of inelastic cycles is reflected in the plastic hysteretic energy. Thus, this cumulative quantity is a 
reliable indicator for evaluating the damage potential of long-duration intense earthquakes. The plastic strain 
energy dissipated by the structure under earthquake excitation is computed as the cumulative area of the 
force-deformation hysteresis loops. For a general elastoplastic cycle, we have that 
 

)UU(RE ymyH            (5.1) 

 

where mU  is the inelastic displacement demand and y y eU R K  the yield displacement. Considering that 

y yR R  , Avilés and Pérez-Rocha (2006) have shown that the dissipated energy is the same in the actual 
system and in the replacement oscillator, that is H HE E  , where the dissipated energy by the replacement 
oscillator is given by 

)U
~

U
~

(R
~

E
~

ymyH            (5.2) 

 
Avilés and Pérez-Rocha (2002) proposed a consistent damage index by making a simple adjustment to the 
Park-Ang index, which traduces in 

    n
m H uDI 1 E 1              (5.3) 

here m m yU U   and u u yU U   are the ductility demand and the ductility capacity, whereas mU  is 
the maximum displacement demand during earthquake excitation and uU  is the ultimate displacement 
capacity under monotonic loading. At the same time, 

n m
H H y yE E F U  is the so-called normalized hysteretic 

energy, where 
m
H y m yE F (U U )   is the hysteretic energy demand during earthquake excitation. The 

coefficients  and , which satisfy the condition 1 , control the strength deterioration in terms of the 
maximum displacement and dissipated energy, respectively. They depend on the characteristics of both the 
structural system and earthquake excitation. It will be assumed that 0.8   and 0.2  . It should be noted 
that these rough values are used only to illustrate the implementation of the damage model. A rational procedure 
to estimate similar coefficients can be found in Bozorgnia and Bertero (2003) by correlations with the predicted 
values of Park-Ang index in its intermediate range. For the failure condition, where DI 1 , and considering 
that   is the equivalent ductility to account for the cumulative damage due to cyclic load reversals in the 
inelastic range, a relation between the ensuing reduced ductility and the ultimate monotonic ductility can be 
obtained from eq. (5.3), as follows 

 n
m u H[1 E (1)]              (5.4) 

6. NUMERICAL RESULTS 

 
Throughout the paper, it will be assumed that c eM M 0.2 , 

2
c e eJ M (H D) 0.05  , 

2
e s eM r H 0.15   , e s 0.05     and s 0.45  . These values are intended to approximate typical 
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building-foundation-soil systems. In this work we use the relative stiffness of the structure and soil, 

e e sH T    for measuring the importance of SSI. If eT  is proportional to eH , then   measures purely 
the soil flexibility. Herein calculations were performed for   1/3, corresponding to say e eH T 25m / s  
and s 75m / s  . The former value is valid for many building-type structures and the latter for soft sites found 
in the lakebed zone of Mexico City. One typical interacting system with eH r 3  for the slenderness ratio 
and D r 0.5  for the embedment ratio was examined. The next basic results were taken from Avilés and 
Pérez-Rocha (2006) in order to show the R  ratios of constant damage strength spectra. 
 
To identify general tendencies of results, a statistical study was performed by using 90 horizontal ground 
motions recorded on 15 free-field stations in Mexico City from 3 distant subduction earthquakes, detected as far 
as 250-300 km away. The average response spectra with and without SSI obtained from these motions are 
depicted in figure 2, for elastic and inelastic behavior, in terms of spectral amplification. This results, depicted 
with thin lines, correspond to constant ductility u  2 and 4. The averaging process was carried out by proper 
normalization of the dominant excitation period at each site (defined as the period where the 5% acceleration 
spectrum attains its maximum) for not eliminating the characteristic peaks typical of narrow-band response 
spectra (Mylonakis and Gazetas, 2000). Also amplitudes were scaled with the peak ground acceleration. The 
fixed-base elastic spectrum exhibits two resonant peaks, one at e sT T 1  associated with the first mode of 
vibration of the soil and other at e sT T 0.35  associated with the second mode. These peaks tend to 
disappear for inelastic spectra. The response spectra with SSI shift towards shorter periods, the consequences of 
which depend primarily on the period ratio e sT T . Unlike what happens with the fixed-base case, resonance in 
SSI occurs for a structure period significantly shorter than the site period. 
 
Strength spectra are determined by iteration on the yield resistance yF  until the m  and 

n
HE  demands 

satisfy equation (5.3), for given values of damage index corresponding to desired performance levels. For the 
failure limit state, DI 1 , average strength spectra are displayed in figure 2 with thick lines. Results are given 
with and without consideration of SSI and, in each case, the spectrum for constant damage is compared with that 
for constant ductility used in conventional design practice. The strengths demands based on constant damage are 
greater than those for constant ductility. This is to compensate for the cumulative damage due to multiple cyclic 
inelastic actions. The effects of structural damage on the strengths required for very short and long periods of 
vibration are negligible, particularly for the lower ductility. Conversely, the constant-damage and 
constant-ductility spectra separate greatly from each other at their resonant peaks. Figure 3 shows the elastic 
displacement spectra, without and with SSI. They are normalized with the peak ground displacement. The 
former tends to the peak ground displacement, the latter tends to this value affected by the factor 

2 2
e eT / T .  

 
Figure 2. Strength spectra without (left part) and with (right part) soil-structure interaction. Thin and thick lines 
indicate constant ductility and constant damage (for ID=1) strength spectra. Dashed and dotted lines stand for 

u  2 and 4, respectively. (After Avilés and Pérez-Rocha, 2006) 
 

Strength-reduction factors were computed using the results given in figure 2. The shapes of R  are shown in 
figure 4. The differences between the results with and without interaction are noticeable, specially for e  4. It 
is apparent that structures on soft soil designed assuming rigid base may experience significant changes in their 
intended strength demands if soil–structure interaction plays an important role. Note that, as required by 
structural dynamics, R 1   for eT 0  and, for the fixed-base condition,  eR   as eT  . For 
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the elastic embedment condition, the ratios tend to this value affected by the factor 

2 2
e eT / T . In some period 

ranges, the values of these factors are larger for rigid- than for flexible-base structures, but in others are smaller. 
Despite this irregular behavior, one can conclude that site effects, reflected in that eR    around the site 
period, are counteracted by soil–structure interaction. This means that, at extreme interaction conditions, it will 
have that 

2 2
e e eR (T / T ) 

  for medium and long natural periods. The reason for this is that, if the interaction 
effects were so large, the structure period would shift to the long-period spectral region, for which the equal 
displacement rule is applied. It should be noted that the R  factor is to be used in combination with 
flexible-base elastic spectra which, in turn, can be derived from rigid-base elastic spectra using the values of eT  
and e

  previously defined. By this way, the yield resistance and maximum deformation of interacting inelastic 
systems are estimated from the corresponding values of fixed-base elastic systems. 

 
Figure 3. Elastic displacement spectra without (left part) and with (right part) soil-structure interaction.  

 
Figure 4. Variations against period of average strength-reduction factors without (left part) and with (right part) 
nteraction for e 2  (dashed lines) and 4 (dotted lines). Thin and thick lines stand for constant ductility and 

constant damage computations, respectively. (After Avilés and Pérez-Rocha, 2006) 
 

The mean value of 
n
HE (1)  is needed to estimate the equivalent ductility for the failure condition. Figure 5 (left 

part) exhibits the average hysteretic energy spectra for u  2 and 4, with and without regard to SSI. As 

u 1   is the minimum value of 
n
HE (1)  expected for very short period, the square root of the ratio 

n
H uE (1) ( 1)   is plotted for convenience. Regarding that 

n 1/ 2
H(E (1))  is linearly proportional to the 

excitation amplitude, this quantity was in reality averaged in place of 
n
HE (1) . We see that this re-normalized 

hysteretic energy varies relatively little in the whole period region, ranging from 1 at eT  0 to less than 2 at its 
maximum and approaching an intermediate value as eT . It is clear that ductility has little influence on 
results, which increase slightly with increasing its value. The energy curves for both ductilities are uniformly 
separated from one another, except for very short period. Equivalent ductility computed by using eqn (5.4) is 
shown in figure 5 (right part). It can be notice that the effective ductility is smaller that the ultimate ductility for 
all structural periods and that this ductility reaches its minimum value at the resonance condition. 
Finally, the strength reduction factors for the failure condition showed in figure 4 (with and without SSI) are 
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compared with those computed using eqn (4.3), (4.4) and (5.4) in figure 6. It is seen that, although the 
representation is not perfect, the approximate rule satisfactorily reproduces the tendencies observed in reality. 
Note that these ratios tend to the equivalent ductility when SSI is disregarded and to the equivalent ductility 
affected by SSI when SSI is regarded. The following steps involved in the application of Eq. (4.3) can help to 
understand this concept: 

1. By use of the expression proposed by Avilés and Pérez-Rocha, compute the modified period eT  and 
damping e

 . The rigid base properties of the structure are assumed as eT , e  and e  

2. Given the structural ductility at the fixed base condition e , and the variation of the normalized hysteretic 
energy (figure 5, left part) compute the equivalent ductility to account for constant damage following eqn (5.4). 

3. By using the equivalent ductility   in eqn (3.3) compute de effective ductility e  

4. From the prescribed site-specific response spectrum, determine the elastic spectral displacement dS  
corresponding to eT  and e

 , just as if the structure were fixed at the base.  

5. The value of R  is then estimated by application of Eq. (9), provided the peak ground displacement 
max
gU , 

affected by the factor 
2 2
e eT / T , is known. For 1/3  , in the examined example, 

2 2
e eT / T 2  for all 

structural periods.  

 
Figure 5. Average hysteretic energy spectra for the failure condition (left part) and equivalent ductility (right 

part) without (thin lines) and with (thick lines) soil-structure interaction, considering u  2 (dashed line) and 4 
(dotted line). (After Avilés and Pérez-Rocha, 2006)  

 

Figure 6. Comparisons of real strength-reduction factors (thick line) with those obtained by the proposed reduction rule (thin 

line) for e  =2 (dashed line) and 4 (dotted line). 

7. CONCLUSIONS 

A simplified energy-based approach for damage analysis of structures with flexible foundation has been 
reviewed. This approach is based on the solution of a non-linear replacement oscillator with the same yield 
strength and energy dissipation capacity as the actual structure. For evaluation of the structural performance, a 
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consistent damage index that is zero for incipient damage and unity for potential collapse was introduced. A set 
of earthquake ground motions collected from Mexico City was used for calculations. Both strength and damage 
spectra were computed for flexible- and rigid-base conditions. Equivalent ductilities to account for low-cycle 
fatigue were also calculated. Based on these results, a simplified procedure for practical damage analysis of 
structures considering the soil-structure interaction effects, is used to compute this R

 factor. It has been 
found that the shapes of these factors are primarily a function of the period ratio of the structure and site. This is 
in agreement with earlier findings by other writers for the fixed-base case. The main differences between the 
factors with and without interaction arise when the structure period is close to the site period. Furthermore, the 
site effects observed for the rigid-base condition tend to be cancelled by soil–structure interaction. These results 
are strongly modified when constant damage is assumed. When constant damage is accounted for, the reduction 
factor tends to the well known rule due to Veletsos and Newmark. As a result, a 
period-damping-ductility-normalized energy-dependent rule was implemented, which permits the use of 
standard free-field elastic spectra. The efficiency of this approximation was validated by comparison with 
results obtained rigorously. The new rule should be useful to assess, in the context of code design of buildings, 
the yield resistance and maximum deformation of flexible-base inelastic structures from the corresponding 
values of rigid-base elastic structures.  
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