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ABSTRACT : 

It is well known that the non-stationary nature of earthquake motion is intensely controlled by the phase
spectrum. However, it has not yet been verified how the stochastic characteristics of phase spectrum of such
motion affects the response of structures.  We therefore modeled the stochastic characteristics of the phase
spectrum, and derived a theoretical solution for mean and R.M.S. response time histories for an SDOF system
excited by a non-stationary input ground motion controlled by these stochastic phase characteristics. We also 
derived a methodology to estimate the peak response value using the concept of a complex envelope function.
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1. INTRODUCTION  
 
The expected peak value for a stationary random process can be obtained using the Spectrum Moment Method
[1], which requires only the amplitude spectrum to derive the peak response of a structure.  If earthquake 
motion were a stationary random process, therefore, the peak response could be readily derived using only the
Fourier amplitude spectrum of the input earthquake motion and the frequency response function of the
structure.  However, earthquake ground motion is obviously a non-stationary process, and its nature is 
intensely controlled by its phase characteristics [2].  This suggests that it is necessary to formulate structural
response statistically by taking into account the probabilistic nature of the phase spectrum to obtain the
expected peak response value of structures. 
In this paper, a methodology to introduce the stochastic characteristics of the phase spectrum into random
vibration analysis of an SDOF (single-degree-of-freedom) system has been developed, and close solutions of 
the mean and variance of structural response are derived in this paper.  We also propose the approximate 
method to obtain the expectation of peak response considering the stochastic nature of phase spectrum.  The 
expected response spectrum can be calculated only in frequency domain without using the time domain Monte 
Carlo Simulation. 
Before our study, only a few study have paid attention to the influence of phase spectrum on the random 
vibration analysis of SDOF oscillator [3],[4].  Soda[3] have derived the mean and mean square as well as 
auto-correlation of non-stationary random excitation in explicit form, by making use of the probability 
characteristics of phase inclination.  Nakamura et al [4] have formulated the expected time history response 
by assuming the phase differences spectrum.  These studies have not treated the frequency dependence of
stochastic nature of phase spectrum and the effects of initial phase have been ignored.  These are most 
different point compared with our study. 
 
 
2. STOCHASTIC CHARACTERISTICS OF PHASE SPECTRUM 

2.1 Definition of Group Delay Time 
The concept of group delay time ( )ωgrt  is used to model a phase spectrum ( )ωφ .  The group delay time

( )ωgrt  is defined by a derivative of the Fourier phase spectrum ( )ωφ  with respect to circular frequency 
ω [3]: 
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( ) ( )
ω
ωφω

d
dtgr =  (1)

Figure 1 shows an example of group delay time calculated for earthquake ground motion and band-passed 
waves.  It is evident from the figure that the average group delay time within a certain frequency band with a
central frequency of ω  expresses the arrival time of a wave component with frequency ω .  The distribution 
width of the group delay time is related to the duration of the wave component’s time history. These
characteristics of group delay time make it much easier to model than directly modeling the phase spectrum.
The mean group delay time ( )ωµ tgr

 and its standard deviation ( )ωσ tgr
 are chosen as the characteristic 

parameters to represent the stochastic characteristics of the group delay time. 
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Figure 1 Example of group delay time for earthquake ground motion 

 
2.2 Stochastic characteristics of group delay time  
We assume that the stochastic characteristics of the group delay time at a frequency of ω  are Gaussian in 
nature.  The characteristics are defined by its mean and covariance along the frequency.  If the number of 
discrete sampling points of the group delay time is N  in a particular frequency domain, the probability 
density function of the discrete group delay time up to the circular frequency ω  is expressed by 
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where ( ) ( )Tk
k φφφφ ∆∆∆=∆ ,,, 21 L  and ( ) ( )Tktgrtgrtgr

k
,2,1, ,,, µµµµ L= . kφ∆ is the phase difference at the circular 

frequency kω , defined by ( ) ωωφ ∆⋅=∆ kgrk t .  
ktgr,µ  is the average group delay time at the circular frequency 

kω , while S  is its covariance matrix.  Since the correlation characteristics of the group delay time among
neighboring circular frequencies has not yet been clarified, we neglected the correlation in this paper, and the 
group delay times were treated as being independent of each other along the frequency.  In this case, the 
density distribution function is finally expressed by 
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where ( ) ( )Tktgrtgrtgr
k

tgr ,2,1, ,,, σσσσ L= . 
ktgr,σ  is the standard deviation of the group delay time at the circular
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frequency kω .  Figure 2 shows a comparison between the normal distribution (i.e. the Gaussian distribution) 
function and the distribution of the calculated group delay time values.  The normal distribution expresses the 
probabilistic characteristics of the group delay time well. 
 
2.3 Mean and variance of group delay time 
A simple model has already been developed to derive the mean and variance of the group delay time 
[2],[6],[7].  Using existing data sets from observed earthquakes, the group delay time of each earthquake
motion was calculated for each frequency band range. If the phase spectrum   at a circular frequency of

( )( )k
j ωφ  for the j-th frequency band is given, the group delay time is defined by 
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Figure 2  Probability density of group delay time compared with the normal distribution function 
 
Due to the fluctuating nature of the group delay time in each frequency band, we calculate its average value

( )j
tgrµ  and standard deviation ( )j

tgrσ  by the following equations: 
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Regression equations as functions of epicentral distance R  and earthquake magnitude M  for these values 
were derived [2]:  
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where α , β  and γ  are regression coefficients.  The superscript j denotes a frequency band range given by 
{ }d

j
d

j TfT 3232 2+≤≤ , where dT  is the duration time of the earthquake motion. 
 
 
3. FORMULATION OF RESPONSE OF S.D.O.F SYSTEM CONSIDERING THE 
PROBABILISTIC PHASE SPECTRUM 
 
The time history of a non-stationary excitation ( )tz&&  such as earthquake acceleration can be expressed by 
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where ka  and kφ  are the amplitude and phase of the k-th decomposed wave ( )tzk&&  at a discrete circular 
frequency kω , respectively.  The phase kφ  is defined by  

∑
=

∆+=
k

l
kk

1
0 φφφ  (8)

where 0φ  is the initial phase, i.e. the phase at 0=ω .   
The equilibrium equation of motion for a SDOF system for the decomposed wave ( )tzk&&  is given by 

 ( )kkkkkk tayyhy φωωω +−=++ cos2 2
00 &&&  (9)

where h  is the damping constant and 0ω  is the natural circular frequency of the SDOF system.  The 
solution of this equation is obtained by the sum of the particular solution (i.e. the solution for stationary 
response) and the general solution (i.e. the solution for free vibration), as given by 
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kC  is the well known frequency response function of the SDOF system, and kφ  is the phase difference 
between the response and input motion, which is defined as follows: 
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The velocity and acceleration responses are obtained from the derivative of ( )ty  given by Eq. (10).  The 
mean value of displacement for the k-th component, ( )tyk , is derived from 

( )[ ] ( ) ( ) ( ) ( ) kkkkkk BtDidptytyE ⋅⋅=⋅= ∫
∞

∞− 0exp φφφ  (12)

Finally, the mean value of displacement ( )[ ]tyE  is obtained from Eq. (13). 
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When the initial phase 0φ  is a uniform random value, the mean value becomes ( )[ ] 0=tyE .  The covariance 
of response displacement ( )[ ]tyVar  is defined by   

 ( )[ ] ( )[ ] ( )[ ]( )22 tyEtyEty Var −=  (14)

This definition is finally expressed as 
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When the initial phase 0φ   is a uniform random value, the third and fourth terms on the right-hand side of 
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Eq. (15) become zero. 
 
 
4. NUMERICAL EXAMPLES 
 
4.1 Comparison of theoretical solutions with sample response 
We demonstrate numerical examples calculated using our theoretical formulations as outlined above.  The 
numerical conditions are listed below. 
A: Conditions for input motion 

1) Discrete sampling time: 02.0=∆t (sec) 
2) Number of data: N = 1024 
3) Mean value of group delay time at each circular frequency: 521 ====

foldNµµµ L  
4) Standard deviation of group delay time at each circular frequency: 221 ====

foldNσσσ L  

B: Conditions for SDOF system 
1) Natural circular frequency of system:  28.60 =ω  
2) Damping constant of system: h =0.05 

We can simulate sample input motions based on the following steps:   
(i) Decide ( )ωµ j

tgr
 and ( )ωσ j

tgr
 for input motion. 

(ii) Generate random numbers based on normal distribution ( )j
tgr

j
tgrN σµ ,  and calculate ( )ωj

grt .  Obtain a 
phase spectrum ( )ωφ j

 by integrating this with respect to ω . 
(iii) Simulate a time history ( )tz&&  taking the inverse Fourier transform of the simulated phase spectrum ( )ωφ  
and amplitude spectrum ( )ωF .  
A number of sample waves with similar stochastic characteristics can be simulated by changing the set of 
random numbers (see step (ii) above).  The time histories of response velocity for the sample waves are 
calculated by solving the equilibrium equation of motion for an SDOF system.  The Newmark’s β  method 
is employed for this purpose. 
These sample response time histories are compared with the average wave ( )[ ]tyE &  and the RMS ( )[ ]2tyE &  
wave previously described.  We can see from Figure 3 that RMS time functions are similar to the envelope of 
sample waves.  In other words, the RMS represents the expectation of the envelope functions. 
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Figure 3  Average wave and RMS wave compared with responses for sample waves 

 
4.2 Effects of initial phase on average wave ( )[ ]tyE &  and RMS wave ( )[ ]2tyE &  

We varied the initial phase 0φ  to ππφ 0.5 ,0.25 ,00 = , and calculated the mean time function ( )[ ]tyE &  and RMS 
time function ( )[ ]2tyE & .  Figure 4 shows the calculated results.   
In the mean function ( )[ ]tyE & , the influence of the initial phase appears at the time 

tgrt µ= .  When the initial 
phase πφ 0.5 0 = , the mean response ( )[ ]tyE &  is 0.  This suggests that the wave shape shows symmetry for

πφ 0.5 0 = .  When the initial phase is 0, the mean response function changes significantly at the time 
tgrt µ= , 

showing that the shape of the response wave becomes non-symmetric.  On the other hand, the RMS response 
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function is less influenced by the initial phase.  The envelope of response is independent of the initial phase.
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Figure 4  Effects of initial phase on average wave ( )[ ]tyE &   and RMS wave ( )[ ]2tyE &  
（ 1021 ====

foldNµµµ L , 221 ====
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4.3 Effects of stochastic characteristics of phase spectrum 
We examine the effects of stochastic characteristics of phase spectrum on the response of 1-DOF system. 
Figure 5 shows the RMS time histories of velocity responses excited by non-stationary excitations with 
different standard deviation of group delay time.  The average group delay time 

tgrµ  for all input motions 
are 10(sec), but the standard deviation of group delay time 

tgrσ  is 1, 2, and 4(sec).  The conditions of SDOF 
system are same as the 4.1.  The average of group delay time only controls the occurrence time of peak 
response.  The peak response is generated a little later at 

tgrt µ= .  This is due to the damping of the system 
as shown in Eq.(11).  On the other hand, the standard deviation of group delay time strongly controls the
value of peak itself.  The response of the system becomes larger and the shape of RMS becomes more sharp 
as 

tgrσ  becomes smaller.   
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Figure 5 Effects of stochastic characteristics of phase spectrum on RMS wave ( )[ ]2tyE &  

 
 
5. ESTIMATION OF PEAK RESPONSE VALUE OF SDOF SYSTEM 
 
The response time history ( )ty  will satisfy a causality condition.  The Complex Envelope ( )tyc  has been 
defined [4]: 

 ( ) ( ) ( ) ( ) ( )( )titYtyityty Hc ϕexp⋅=⋅+=  (16)

where ( )tyH  is the Hilbert transform of ( )ty .  ( )tY  is the amplitude of the complex envelope, which 
represents the envelope of ( )ty .  As the shape of the root mean square ( )[ ]tyE 2

φ
 of ( )ty  is similar to the 

envelope of ( )ty , the following assumption is introduced: 
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( ) ( )[ ]2tyEtY φα ⋅=  (17)

The relationship between ( )tY  and ( )ty  can be obtained by using Pareseval’s theorem.   

 ( ) ( )∫∫
∞

∞−

∞

∞−
×= dttydttY 22 2  (18)

The coefficient α  is therefore determined by  

 ( ) ( )[ ] ( )∫∫∫
∞

∞−

∞

∞−

∞

∞−
×=⋅= dtty dttyEdttY 2222 2φα  (19)

The right side of Eq. (19) is readily calculated by the Fourier spectrum of input motion and the frequency 
response function using Pareseval’s theorem. 
A response spectrum can be easily calculated using this technique.  Figure 6 shows examples of a velocity 
response spectrum.  The coefficient α  is about 2.0 for the whole range of the period.  The response 
spectrum calculated by the technique outlined here is consistent with the results of the Monte Carlo 
simulation.  This newly proposed method enables efficient estimation of the response spectrum in 
consideration of the stochastic characteristics of phase spectrum. 
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Figure 6 Estimated results of velocity response spectrum compared with Monte Carlo simulation technique

 
 
6. CONCLUSTIONS 
 
(1) We formulated the mean and variance of the SODF system response time history taking into account the 

probabilistic nature of the phase spectrum.  The concept of group delay time ( ) ωφω ddt gr = , instead of 
directly using of phase spectrum ( )ωφ , is used to formulate the stochastic response. 
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(2) The average group delay time within a certain frequency band with a central frequency of ω  expresses 
the arrival time of a wave component with frequency ω .  The distribution width of the group delay time 
is related to the duration of the wave component’s time history. 

(3) By using this formulation we investigate the effects of the stochastic characteristics of phase spectrum on
the time history of structural response.   

 The initial phase 0φ  controls the symmetry of amplitude of response time history.  For example, the 
wave shape shows symmetry for πφ 0.5 0 = .  The envelope of response, however, is independent of 
the initial phase. 

 The average of group delay time, 
tgrµ , only controls the occurrence time of peak response.  On the 

other hand, the standard deviation of group delay time, ( )ωσ tgr
, strongly controls the value of peak 

itself. 
(4) Introducing the concept of complex envelope, the approximate method to obtain the average of peak 

response is proposed considering the stochastic nature of phase spectrum.  As a result, expected value of
the response spectrum can be calculated easily only in frequency domain without using the time domain 
Monte Carlo Simulation. 
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