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ABSTRACT : 

A simplified design method for SDF and MDF systems equipped with non-linear viscous dampers is proposed 
in this paper. It is known that the response of non-linear viscous dampers is proportional to a fractional
power-law of the velocity, whose exponent ranges between 0.1 and 1. The response of these systems is usually
investigated by evaluating the supplemental damping ratio due to the non-linear dampers under elastic 
conditions. The method proposed by seismic codes and guidelines is the equivalent energy approach. Following 
this approach the supplemental damping ratio is related to the maximum displacement, so that iterative
procedures are required. In order to avoid these iterative procedures a direct method has been studied. A new
dimensionless parameter, called damper index, not related to the maximum displacement of the system, has
been introduced. The response of the whole system can be expressed as a function of the fundamental period of
the structure, of the exponent of velocity and of the proposed parameter. The response of SDF and MDF 
systems has been calculated, numerically, considering harmonic external force and recorded ground motions.
This numerical investigation has been performed in order to validate the proposed method. Finally a procedure 
for determining the spectrum of supplemental damping ratio related to the damper index from response spectra 
provided in seismic codes is proposed. 
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1. INTRODUCTION  
 
The simplified procedures proposed in literature to design structures equipped with non-linear viscous dampers 
are usually based on the assessment of the effective damping ratio (ξeff.). Operating in this way it becomes easy 
to predict the response of the system by using the damping reduction factor (B) tabled in FEMA 450 (BSSC, 
2003) on the basis of recent works (Ramirez et al., 2002b). The effective damping ratio is the sum of three 
terms (Ramirez et al., 2002a): the inherent damping ratio (ξ0), usually equal to 5%, the damping ratio related to 
the presence of viscous dampers (ξV) and the hysteretic damping ratio related to the non-linear behavior of the 
structure (ξH). It has been shown that ξV can be expressed as ξsdf(µ, α), where ξsd is the supplemental damping 
ratio due to the presence of viscous dampers under elastic conditions and f(µ, α) is a factor related to the 
non-linear behavior of the structure (µ is the displacement ductility demand) and to the exponent of velocity α.
The main issue is to assess the supplemental damping ratio, which is the term really affected by the presence of
the viscous dampers.The supplemental damping ratio can be obtained by imposing the equivalence between a
non-linear damper  and a linear one. The criteria developed in literature are expressed in terms of energy 
dissipated (Lin and Chopra, 2002) or power consumption (Peckan et al., 1999). In all these approaches the
equivalent damping ratio is related to the maximum displacement of the system, so that iterative procedures 
have to be implemented. These criteria can be easily extended to the MDF case (Ramirez et al., 2000; Whittaker 
et al., 2003). In this work a procedure to assess the supplemental damping ratio directly, without any iterative
process, is proposed. 
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2. SUPPLEMENTAL DAMPING RATIO 
 
The supplemental damping ratio can be evaluated by imposing the equivalence between a non-linear viscous 
damper and a linear one, so that the supplemental damping ratio is equal to the damping ratio of the linear
damper. 
 
 
2.1. SDF system  
 
Considering a cycle of harmonic motion u(t)=u0sinΩt, the supplemental damping ratio can be expressed as 
follows (Lin and Chopra, 2002): 
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where m is the mass of a SDF system undergoing the harmonic motion, ω is the natural frequency, cα is the 
damper coefficient and α is the damper exponent. It should be noticed that in Eqn. 2.1 the term u0, which is the 
maximum displacement, is related, in usual problems, to the response. The constant λ has been calculated 
(Ramirez et al., 2002a) and tabled in FEMA 450 (BSSC, 2003) for different values of α. For a linear damper 
(α= 1.00) λ is equal to π. 
 
 
2.2. MDF system  
 
The supplemental damping ratio for a MDF system equipped with non linear viscous dampers can be evaluated 
by using the concept of equivalent linear viscous damping (Chopra, 2001). Operating in this way, the 
supplemental damping ratio for the first mode of vibration is obtained as follows: 
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where Droof  is the amplitude of roof displacement, T1 is the undamped first period of vibration, φi1 is the first
undamped mode shape (normalized so that φi1=1.00 for i corresponding to roof), the index j is referred to each
damper, cαj is the damper coefficient, fj is the displacement magnification factor, φrj =φj1-φ(j-1)1 is the difference
between the first modal ordinates associated with degrees of freedom j and (j -1) and α j is the damper exponent.
 
 
3. EQUATIONS OF MOTION 
 
By introducing the supplemental damping ratio, the equation of motion for a SDF system with mass m equipped 
with a non-linear viscous damper, and subjected to an harmonic external force ma0sinΩt, is: 
 

 ( ) ( ) ( )1 1 2
0 0 02 2 / ( ) sgn sinsdu u u u u u a tααξ ω ξ ω λ π ω− −+ + Ω + = Ω  (3.1) 

 
It should be noticed that the term related to the response, u0, is still included in the equation. In case of ground 
acceleration üg(t), in the expression of ξsd (Eqn. 2.1) the frequency of the external force, Ω, is taken equal to the
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natural frequency, ω, so that Eqn. 3.1 becomes:  
 

 ( ) ( ) ( )1 1 2
0 02 2 / ( ) sgnsd gu u u u u u u tααξ ω ξ ω λ π ω ω− −+ + + = −  (3.2) 

 
It has been shown that the response of the Eqn. 3.2 is directly dependent on the amplitude of the ground
acceleration üg,0 (Lin and Chopra, 2002). This result is really significant because it allows to express the
response in terms of displacement, by a dimensionless parameter: the deformation response factor Rd=u0ω2/üg,0. 
Furthermore we have pointed out that, referring to the Eqn. 3.1, the response is affected only by the ratio of the 
frequencies and not by their single values. By introducing the deformation response factor into Eqn. 3.1, the 
following equation of motion is derived:  
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4. DAMPER INDEX 
 
The damper index ε is defined as follows: 
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Operating in this way, the following relationship between ξsd and ε can be written: 
 

 ( ) 1
sd dR αξ ε −=  (4.2) 

              
It can be noticed that forα=1.00 we find out ξsd=ε and the damper index does not depend on the response. The
damper index is then introduced into Eqn. 3.1 and the following equation is obtained: 
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The Eqn. 4.3 does not include any terms related to the response; all the terms included can be calculated once
the characteristics of the system and the external force are known. In this way the response can be evaluated
directly without any iterative procedure. The definition of the damper index (Eqn. 4.1) can be extended for the
case of ground acceleration by substituting the frequency of the external force, Ω, with the natural frequency of 
the system, ω. In the same way the Eqn. 4.3 can be adapted. 
 
 
4.1. Analysis of the response in terms of Damper Index  
 
By solving numerically the Eqn. 4.3 it is possible to obtain the response. The graphs of the deformation 
response factor versus the ratio of the frequencies Ω/ω, for ξ0 = 5%, are shown below for different values of ε
and α=0.50 (Fig. 1a) and for different values of α and ε=0.35 (Fig 1b). Fig. 1a shows that the damper index 
affects the response significantly for values of the ratio Ω/ω around the resonance. Fig. 1b shows how much the 
exponent α affects the response for a fixed value of ε (that means fixed characteristics of the system): we can
individuate a first zone for Ω/ω less than 0.70, where for increasing values of α the response increases, a second
zone from Ω/ω equal to 0.70 to Ω/ω equal to 1.40 where this trend is inverted and a last zone for Ω/ω larger 
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than 1.40 where the behavior is similar to that of first zone. 
 

(a) (b)
Figure 1a Deformation Response Factor for ε equal to 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and α = 0.50 

Figure 1b Deformation Response Factor for α equal to 0.30, 0.50, 0.80, 1.00 and ε = 0.35 
 

Once the response has been found by solving numerically the Eqn. 4.3, we can assess the deformation response 
factor, Rd and, through the Eqn. 4.2, the supplemental damping ratio, ξsd. The graphs of ξsd versus the ratio of 
the frequencies Ω/ω are illustrated below for different values of ε and α=0.50 (Fig. 2a) and for different values 
of α and ε=0.35 (Fig 2b). 
 

ξ  

Ω/ω (a)

ξ  

Ω/ω (b)
Figure 2a Supplemental Damping Ratio for ε equal to 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and α = 0.50 
Figure 2b Supplemental Damping Ratio for α equal to 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and ε = 0.30 

 
Fig. 2b shows that the spectrum of the supplemental damping ratio can be divided into three zones, as it has
been noticed in previous paragraph for the deformation response factor. In the two lateral zones, for a fixed 
value of ε, the supplemental damping ratio increases for decreasing values of α: that means that for small values 
of α the system is able to dissipate a larger quantity of energy and to reduce more efficiently the response. This 
result is in accordance with previous observations about Fig. 1b. This trend changes for the values of the ratio 
Ω/ω close to the resonance. 
 
 
4.2 Damper index for MDF 
 
In order to define the damper index, the relationship of Eqn. 4.2 can be used as follows: 
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where ξsd,1 is expressed in Eqn. 2.2, RD,1 is the deformation response factor for the first mode of vibration
referred to the displacement of the top level, Droof , and ε1 is the damper index for the first mode of vibration. 
We can express RD,1 as follows: 
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where PGA is the peak ground acceleration, ω1 is the frequency of the first mode of vibration and Γ1 is the first 
mode participation factor. If we put the Eqn. 2.2 and the Eqn. 4.5 into the Eqn. 4.4 we finally obtain the
subsequent relationship, considering α constant for all the dampers: 
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Once again, in the Eqn. 4.6 any term related to the response does not appear. 
 
 
5. CASES OF STUDY 
 
In order to validate the procedure, four cases of study have been solved by using the iterative procedure
proposed in literature, based on the equivalent energy approach, and the direct procedure proposed in this
paper, based on the calculation of the damper index. These results have been compared with the ones obtained
by solving numerically, using the Fast Non Linear Analysis implemented in the computer program SAP
2000NL, the same four cases. Two steel moment resisting frames (Frame A and Frame B) equipped with
dampers with exponent α = 0.50 have been studied. The two frames are characterized by the same resisting
elements (beams and columns). They have dampers with different coefficients (cαj) and masses at each level 
that have been varied proportionally according to a factor equal to 0.354. 

 

 
Figure 3 Steel Moment Resisting Frame 

 
Operating in this way the two frames have same mode shapes and same participation factors. In the Table 5.1
the characteristics of the two frames are shown. Two recorded ground accelerations have been applied to the
two structures so that four cases have been investigated. The selected ground motions are El Centro and 
Newhall, and they have been scaled in order that PGA is equal to 0.25g.  
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5.1 Assessment of the Supplemental Damping Ratio 
 
The supplemental damping ratio has been assessed by using an iterative procedure proposed in literature (Lin 
and Chopra, 2002). The calculation of the supplemental damping ratio by the direct procedure requires the
definition of the spectra of supplemental damping ratio versus period in terms of ε and α, for each ground 
acceleration. The following procedure has been adopted: 1) ε1 is calculated using Eqn. 4.6; 2) Eqn. 4.3 is solved 
numerically for each ground acceleration by varying the natural period of the system in order to obtain RD,1; 3) 
the supplemental damping ratio ξsd,1 is calculated for each period using Eqn. 4.2. Once the spectrum is made it
is possible to assess the supplemental damping ratio for known values of ε1 and α. The spectrum for the case of 
Frame A and El Centro ground acceleration is shown in the following figure. In this case ε1= 0.2424. In the 
Table 5.2 the results for the four cases are illustrated. It can be noticed that the difference between the two
procedures in assessing the supplemental damping ratio is very low for all the cases. 
 

 
Figure 4 Spectrum of the Supplemental Damping Ratio for different values of ε and α=0.50 for El Centro 

ground acceleration (green line is the spectrum for the case of Frame A) 
 

      Table 5.1 Properties of the two considered frames         Table 5.2 Supplemental Damping Ratio  
Level Mass cαj Mode T  Ground 

acceleration 
Iterative  
Procedure 

Direct  
Procedure ∆ 

1 2900 kN 32.00 kN/(sec/mm)0.5 1 1.6868 sec  El Centro 0.5355 0.5425 1.31% 
2 2900 kN 32.00 kN/(sec/mm)0.5 2 0.5388 sec  Newhall 0.4096 0.4005 2.22% 

Fr
am

e 
A

 

3 1567 kN 32.00 kN/(sec/mm)0.5 3 0.2873 sec      

Level Mass cαj Mode T  Ground 
acceleration 

Iterative  
Procedure 

Direct  
Procedure ∆ 

1 1028 kN 8.00 kN/(sec/mm)0.5 1 1.000 sec  El Centro 0.1631 0.1645 0.86% 
2 1028 kN 8.00 kN/(sec/mm)0.5 2 0.3194 sec  Newhall 0.1056 0.1076 1.89% 

Fr
am

e 
B

 

3 555 kN 8.00 kN/(sec/mm)0.5 3 0.1710 sec      

 
 
5.2 Results 
 
The response of the frames, without dampers, has been calculated through a modal linear analysis. The
damping ratio of the first mode has been evaluated by using the iterative procedure and the direct procedure
described before. The damping ratio of the higher modes has been evaluated by using a method proposed in
literature (Ramirez et al., 2000). In the Table 5.3 the maximum displacements of the top level are shown. They
are compared with the ones obtained by using the Fast Non Linear Analysis implemented in SAP2000 NL, 
where the frames still have an elastic behavior, but they are equipped with non-linear dampers. 
 

T

ξ 
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Table 5.3 Maximum Displacements (mm)  
Ground 
acceleration 

FNA 
Analysis 

Iterative  
Procedure 

Direct  
Procedure 

∆ 
Iterative 

∆ 
Direct 

El Centro 47.2780 50.5483 49.9261 6.92% 5.60% 

Fr
am

e 
A

 

Newhall 101.0035 86.1975 86.6950 14.66% 14.17% 
Ground 
acceleration 

FNA 
Analysis 

Iterative  
Procedure 

Direct  
Procedure 

∆ 
Iterative 

∆ 
Direct 

El Centro 56.7627 55.8673 55.6251 1.58% 2.00% 

Fr
am

e 
B

 

Newhall 132.5149 134.5471 133.8828 1.53% 1.03% 

 
It can be noticed that the errors are smaller for Frame B. It can be easily shown that a part of the total error
illustrated in Table 5.3 is due to the linearization of the problem. This part becomes more relevant for some 
periods and nearly zero for other periods. These two behaviors can be found for El Centro ground acceleration
at a period equal to 1.68 sec (period of first mode of Frame A) and at period equal to 1.00 sec (period of first
mode of Frame B). 
 
 
6. SPECTRA OF THE SUPPLEMENTAL DAMPING RATIO  
 
As previously illustrated the direct procedure requires to define the spectrum of the supplemental damping
ratio. In order to achieve this purpose on the basis of spectra provided by international seismic codes, the 
following method is proposed. The damper index can be written in terms of pseudo-acceleration, which can be 
derived from response spectrum provided by seismic codes: 
 

 ( )( )1
,sd a sdS T
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−
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where aS  is the pseudo-acceleration normalized to PGA. Usually the relationship between aS and the 
damping ratio is provided by codes, so that once the damping ratio is known, the pseudo-acceleration is known. 

 
      Figure 5 Spectrum of Damper Index       Figure 6 Spectrum of Supplemental Damping Ratio 

 
Moving from this consideration, Eqn. 6.1 can be used to define the spectra of the damper index, for a fixed
value of the exponent α. These spectra are useful because if a horizontal line for a constant value of the damper
index (such as 20%) is drawn, this line intersects the spectral curves associated to different values of the
supplemental damping ratio. Therefore it is possible to find some points that can be plotted in a graph to create
the spectra of the supplemental damping ratio. This procedure is shown in the Figures 5 and 6, that have been 
realized by using design spectrum of the Italian Seismic Code (2003) for a category of soil A and an exponent α 
equal to 0.50. 

T
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7. CONCLUSIONS 
 
The method introduced in this paper shows how the supplemental damping ratio, due to the presence of the
non-linear viscous dampers, can be assessed by a direct procedure. To this purpose a new dimensionless
parameter, ε, has been proposed. The cases of study have shown that the direct procedure proposed leads to
results very close to the ones obtained by the iterative procedure reported in literature. In order to get the direct
procedure easily usable by structural designers, a method for defining the spectra of supplemental damping 
ratio for known values of α and ε on the basis of spectra provided by seismic codes has been proposed. 
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