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ABSTRACT : 

In this paper, a statistical pattern recognition method based on time series analysis is implemented to a 5 Story 
steel frame model. This method uses a combination of Auto-Regressive (AR) and Auto-Regressive with 
eXogenous inputs (ARX) prediction models. The response of the system was obtained for a linear system 
subjected to white-noise input. The standard deviation of Mahalanobis squared distance between healthy and
damaged state is used to locate structural damaged sites. Three damage scenarios were studied. The occurrences 
and location of damage were identified for all cases. 

KEYWORDS: damage detection, structural health monitoring, vibration-based method, time series 
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1. INTRODUCTION  
 
Civil structures have been deteriorated due to ageing or strong ground motions of earthquakes. The attention 
paid to this deterioration and the urgent need for their rehabilitation is relatively recent. The rehabilitation of
structures clearly revealed the limit of knowledge in the field of the evaluation to gather the data necessary to 
the analyses.  
Although damage monitoring of civil structures has generated a lot of research, there is still a debate whether
the measured deviations are significant enough to be a good indicator of structural degradation.  
Between all methods based on frequency and time domain analysis that have been proposed, an innovative 
approach to assess the current health state of a structure is the statistical analysis of its measured vibration data.
This approach offers several advantages over existing modal-based damage detection methods. Modeling errors 
and modal identification limitations are avoided in this approach making it more attractive for vibration-based 
damage detection. 
In this paper, a numerical scheme to predict the dynamic response of a 5 Story Steel Frame is implemented
using the response of numerical simulation obtained from a linear system excited by a white-noise input 
excitation. 
 
 
2. AR-ARX PREDICTION MODEL  
 
Sohn et al. presented a comprehensive report providing an overview of existing damage detection methods. The
main conclusion that can be drawn from this report is that modal-based damage detection methods usually 
require large amount of high-quality data and considerable number of sensors strategically located, 
requirements that are almost impossible to get in the field. Therefore, the research community has been recently
exploring the use of pattern recognition approaches to tackle the problem of reliable damage detection when
vibration data are measured at limited locations. 
Sohn et al developed an AR-ARX prediction model, which is solely based on signal analysis of measured
vibration data. This model has been successfully implemented in various damage detection problems as
reported by Sohn et al. the mathematical derivation of the model begins by using standardized time signals as
shown in Eqn. 2.1 
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 x t x t µ /σ  (2.1) 

 
where x(t) is the standardized signal of the initial signal xi(t) at time step t and μxi and σxi are the mean and the 
standard deviation of xi(t), respectively. The next step consists on the construction of AR(p) models for each
measured location. One of the damage identification features involves the use of the coefficients of the AR(p)
models. Therefore, a computationally efficient stepwise least square algorithm for the estimation of AR(p)
parameters is used herein in conjunction with the AR-ARX model proposed by Sohn et al. 
An AR model using the Yule-Walker method as proposed by Sohn is then replaced by the ARfit algorithm
proposed by Neumaier and Schneider. This algorithm computes the model order, popt, that optimizes the order 
selection criteria using QR factorization of a data matrix to evaluate, for a sequence of successive orders, the
model order and to compute the parameters of the AR(popt) model. Then, the AR(popt) model can be represented 
as shown in Eqn. 2.2.  

 
 ∑  (2.2) 

 
Once the AR(popt) model has been constructed, the residual error of the model, ex(t), is computed by subtracting
the data obtained from the AR(popt) model from the standardized signal, x(t). The AR(popt) coefficients, φxj, will 
later be used to locate damaged sites. Finally the residual error, ex(t), is employed in the construction of the
ARX model as shown in Eqn. 2.3 by assuming that this residual error, defined by the difference between the
measured and the predicted values obtained from AR model, is mainly caused by unknown external input.  

 
 ∑ ∑  (2.3) 

 
where εx(t) is the residual error after subtracting the ARX(a,b) model from the standardized signal, x(t). Similar 
results are obtained for different values of a and b as long as the sum of a and b is kept smaller than popt as 
reported by Sohn et al. The residual errors from healthy state are defined as εx(t) and the residual errors after the 
occurrence of structural damaged are defined as εy(t). Finally, using the standard deviations of εx(t) and εy(t), the 
ratio, σ(εy)/σ(εx), is then defined as the first damage sensitivity feature. A threshold value for this ratio must be 
computed using measured vibration data obtained from different operational conditions. Therefore, a value of
this ratio larger than the computed threshold value indicated the occurrence of damage. The standard deviation 
of the Mahalanobis squared distance between healthy and damaged AR(popt) coefficients is then used to locate 
structural damaged sites as shown in Eqn. 2.4.  
  

 
  (2.4) 

  
where φxj

d are the AR(popt) coefficients from the damaged state,  are the mean values from the healthy state 
and s is the covariance matrix of . 
The Mahalanobis squared distance is independent of the scale of the AR(popt) coefficients. Therefore, vibration 
data measurement point closest to the location of the structural damage would have the largest values of D. The
proposed AR-ARX prediction model uses two damage sensitivity features, σ(εy)/σ(εx) and D, to identify and 
locate structural damage respectively. 
 
 
3. FIVE-STORY STEEL FRAME MODEL 
 
The numerical model of the frame is based on a full scale five-story steel structure shown in Figure 1 and elevation 
views, with cross section of members are shown in Figure 2. 
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