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ABSTRACT: 
 
In this paper, dynamic response analysis of the isolated structure performed by the mathematical models 
to investigate functional relationship between natural periods of isolated flexible structure and its mass 
fraction. Fundamental Frequency of the isolated flexible structure depends on the mass fraction of the 
structure that some fraction of mass vibrates at the frequency of isolator and rest vibrates at its own 
frequency. The maximum displacement response of the isolated structure at isolation level is the key 
design parameter for the application of base isolation. Base isolator can reduce inertia forces generated by 
ground shaking. However, since natural frequency of a flexible structure directly related to its mass 
fraction; it is the case that the natural frequency of isolator would match to the one of the mode of the 
natural frequency of the isolated flexible structure. As a result inertia forces of the isolated structure 
would be amplified instead of reduced. Therefore, this paper underlines the importance of the mass 
fraction, and to obtain reliable parameters when flexible structure is capable to translate at base. The 
outcomes of the mathematical models are consistent with the experimental results of two and three story 
model of structure.  
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INTRODUCTION 
 
The Primary objective of isolating structure is to reduce inertia forces induce on structure during ground 
shaking. To achieve this objective, the isolated structure translates at base relative to ground when excited 
by ground motion. The magnitude of the lateral force that causes the lateral displacement of the supported 
structure depends on primarily natural frequency of isolated structure. And natural frequency of the 
isolated flexible structure depends on mass fraction. The following mathematical models are used to 
demonstrate the functional relationship between natural frequency of isolated flexible structure and its 
mass fraction.  
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Fig: 1 Pendulum motion model   Fig: 2 sliding model at horizontal surface       Fig: 3 Lump-mass model 
 
 
Pendulum motion of structure supported by Friction Pendulum bearing: 
 
As an isolation device, Friction Pendulum Sliding (FPS) bearings are most efficient and cost effective 
seismic protection system once properly designed.  This system simply alters the force-response 
characteristics of the structures at the expense of a large displacement at isolation level. The isolated 
structure supported by (FBS) bearings undergoes friction pendulum motion when excited by ground 
motion. Maximum value of the displacement response of the isolated structure is a crucial parameter for 
designing proper and reliable seismic protection system.  
 
The mathematical model shown in Fig: 1 represents the motion of the structure when such structure 
excited by harmonic ground accelerations. With this model, bM  denotes of the total mass of the structure 
if structure is totally rigid; if not it denotes the mass portion of the structure that vibrates at the frequency 
of friction pendulum bearings. In this case the structure behaves as a flexible structure, and the rest 
portion of the mass of the structure, sM , which vibrates at its own frequency.  The equations of the 
motion are derived as follows. 
 

Rx=θsin                    (1) 
WFR=θsin  , WFN=θcos , Nf FF µ=         

)( RxWFR =                    (2)   
θµ cosWFf =                   (3) 

)sin()( 0

....
wtt gg Χ=Χ , )(

......
tx gΧ+=Χ , sb WWW += ,   fR FFV +=  

Dynamic equilibrium of the structure supported by (FPS) bearings is as follows: 

0
..

=+Χ VMb  Or 0)(
....

=++Χ+ VFxM Rgb                (4) 
By replacing equation (2) and equation (3) into equation (4), the governing equation of structure, which is 
supported by FPB and subjected to harmonic ground excitation, would be derived as follows: 

gbb MxRWWxM
....

)/(cos Χ−=++ θµ    (5) 
It is extremely difficult to solve the above second-order non-linear differential equation (5). Therefore, 

nonlinear trigonometric term, θcos  is eliminated by redefining it with the terms of 
.

, xR  and Dw . In order 
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to obtain an ordinary second-order linear differential equation from this non-linear differential equation 
(5), the procedure starts by taking derivative of equation (1) as follows: 

)()(sin Rxdd =θ , )(cos
..
Rx θθ =               (6)      

.
θ , the angular velocity, which is the natural vibration frequency, Dw , of damp structure supported by 
friction pendulum bearings (FPB) subjected to harmonic ground excitation.  

The equation (5) is reorganized by replacing sb WWW += , sb MMM += , )(cos
..
Rx θθ = ,  

Dw=
.
θ  And Rgwn =  as follows: 
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Since 21 ξ−= nD ww , and nD ww ≅  when 1<<ξ  , the motion of the supported structure with (FPS) 
bearings is derived as a second order ODE as follows 
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...

)1()1( Χ−=++++ µ               (7) 

   Where,  

 MW ,      The total weight, mass of the supported structure 

 bb MW ,     The weight, mass of the structure that vibrates at the frequency of FPB 

 ss MW ,      The weight, mass of the structure that vibrates at its own frequency  

 ΥΧ,          Imaginary, fix coordinate system 

 yx,          Translating coordinate system, which is attached to (FPS) bearings? 

 V             The lateral force-shear force- of bearing at the isolation level,  

 RF             Restoring force 

 fF             Friction force 

 
..

, xΧ           Absolute, relative velocity of bearing 

 
....

, xΧ        Absolute, relative acceleration of bearing 

 )(
..

tgΧ        Harmonic ground acceleration, 
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..

gΧ           Peak ground acceleration, 

 R              The radius of curvature of bearing 

 µ             The coefficient of friction mobilized during sliding (assumed constant) 

nw       Natural frequency of FPB 

 Dw       Damp frequency of isolated structure 

 w       Excitation frequency 

 ξ       Damping ( 2/µξ = , for rigid structure), ( 2/µξ > , for flexible structure) 

   nϖ       Dominant natural frequency of flexible structure supported with FPB 

The equation of the motion for flexible structure in the form of linear (ODE) 

0>sM , and nϖ , which is dominant natural frequency of system is 22 )1( n
b

s
n w

M
M

+=ϖ . The governing 

equation of the motion of a supported flexible structure by (FPB) would be derived from equation (7) as 
follows: 

gnn xxx
..

2
...

2 Χ−=++ ϖξϖ             (8) 

Where,  )1(
2 b

s

M
M

+=
µξ  

Since, 0)1( >+
b

s

M
M

 then nw>ϖ , flexiblerigid ζξ <  

Indeed, the dynamic response of flexible structure is a combination of two vibrations. Those vibrations 
are the vibration of some mass of structure that vibrates at the frequency of FPB, and the vibration of the 
rest of the mass of the structure that vibrates its own dominant frequency. 
The obvious question would be asked about what fraction of the total mass of structure vibrates at the 
frequency of friction pendulum bearings (FPB), or what fraction of the total mass of structure vibrates at 
its own dominant frequency? The stiffness level of the structure would be the answer of this question.  
For example, if stiffness of structure is too large, then whole structure would be assumed rigid, 
and 0=sM .  
 
The complete solution of the above ordinary differential equation (8) would be as follows: 
 

wtDwtCtBtAex DD
twn cossin)sincos( +++= − ϖϖξ         

 
This general solution contains two distinct vibration components: Transient vibration and steady state 
vibration, where the constants A, B, C and D are defined as follows:  
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For flexible structure, the natural frequency in the above equations will be replaced by  
 

22 )1( n
b

s
n w

M
M

+=ϖ    ,     
b

s
nn M

Mw += 1ϖ  

 
Parameter study 
Parameter studies performed for the rigid and flexible structures when the structures are excited by 
harmonic ground acceleration. Excitation frequency is used as π3=w . Maximum peak acceleration is 
applied as 1.0g. For flexible structure mass fraction is assumed 4)/( =bs MM . Mat lab figures below 
illustrate dynamic and free responses of the relative displacements, absolute velocities and absolute 
accelerations of rigid and flexible structures supported by (FPS) bearings of radius of curvature of R=90 
in.  
 
The excitation frequency is chosen as w=3*π that is dominant frequency of most major 

earthquakes 0

..

gΧ =1.0g (peak ground acceleration) 
 

 
 
Fig. 4 Total Dynamic and free responses of the a flexible structure supported by (FPS) bearings 
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The motion of the structure when sliding at frictionless surface: 
 
The mathematical model in Fig: 2 represent the structure capable to translate at the frictionless surface. 
 
If a unit force is placed at each floor, the influence coefficients are as follows: 

00a  =  0/1 k  

11a  =  10 /1/1 kk +               = EIhk 24//1 3
0 +  

22a  = 210 /1/1/1 kkk ++              = EIhk 24/2/1 3
0 +   

33a  = 3210 /1/1/1/1 kkkk +++    = EIhk 24/3/1 3
0 +  

Where, 

k1  = k2  = k3 = k            (assumed) 

M1  = M2 = M3 = m           (assumed) 

k = 24EI/h3   

Fundamental frequency of the flexible structure derived is as follows: 

3
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h3/4EI 0≈  then, fundamental frequency of isolated flexible structure becomes as follows: 
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Where, 

o

o
n m

kw =  (Fundamental frequency of the structure fixed at base) 

Parameter study: 

Let assume: 

m≤mo≤ 3*m,             and       5 kip/in≤  k0≤ 20 kip/in 

M1  = M2 = M3 =        m = 1000/g (kips s2/in) 

h  = 12 ft.  g =  386 in./s2       EI         =        (29000 ksi)*(140 in4 )     
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For above example, following mat lab Fig: 5 shows that the fundamental period of structure increases 
significantly when the foundation of structure is capable to translate. It also illustrates that the mass 
addition to basement increases the fundamental period of the structure as well.  

 

Fig: 5 Natural Period of the isolated flexible structure (left) and rigid structure (right)  

 

Motion of the structure when supported by lead rubber type of isolator: 

A base isolated structure can also be modeled as a two DOF system as shown in Fig.3. In this model m2 
represents the whole mass of structure as a lump mass. In order to compare the outcomes of models for 
the isolated frequency of structure; m2= 3*m, m1=m0 and k1=k0 are assumed with the same parameter 
used in previous model. The equation of the motion is derived as follows  
 

In Fig: 3 model for base isolated structures as a two DOF system: 
02 ≈c    (Assumed) 

 gumuukum
..

2122

..

22 )( −=−+   ;                    (1)        0])[( 221
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0)]()[( 2
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2
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2
2 =−+−− kkkwmkwm          (Second order characteristic polynomial) 

2

22
k
mTF π=       (Fix base period of the structure)           

 

1

21 )(2
k

mmTI
+

= π         (The isolator period) 

The natural modes and periods of vibration T1 and T2 of the isolated structure can be derived from the 

characteristic simultaneous equation (3) and (4): 

T1, 2 =    [(2TF
2TI

2/(1+n))/[(TF
2+TI

2)±(TF
4+TI

4+(TI
2TF

2)(2-4/(1+η)]0.5 

Where; 
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12 mm=η     (Mass fraction)                  

IF TT=α  

 )1( 2
1 α+= ITT         (First mode)   

When 5.001.0 ≤≤α     then   T1  ≅  TI   which the fundamental period of a rigid structure supported by 
friction pendulum bearing is equal to fundamental period of friction pendulum system (FPS). 
 

)1(/2 ηαη ++= FTT    (Second mode) 

Parameter study: 
 
By using same parameters, in previous parameter study (m2= 3*m, m1=m0 and k1=k0), the following Mat 
Lab figure illustrates natural periods (see Fig. 6) of this three-story building as a 2-DOF base isolated 
structures with mass lump model illustrated in Fig 3 . By replacing k2=∞ , this model also represents 
isolated rigid structure.  Because of the presence of the isolation system, the participation of the first 
mode is dominant and flexible structure will primarily oscillate along its firs mode.  For rigid structure 
second mode would not be produced. 
 

 

Fig.6 Natural periods of base isolated flexible and rigid structure with 2-DOF mass lump model 

 
Conclusion 
 
It is demonstrated by this paper that isolators used for flexible structures requires careful consideration 
about its displacement response at base. Inertia reduction achieved by base isolator is always at the cost of 
the large displacement at base. The possible large displacement must be managed by the isolator. 
Isolating rigid structure is pretty straight design application since its altered natural frequency is not 
related to mass of the structure. However, the altered natural frequency of the isolated flexible structure is 
certainly related to its mass distribution.  
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