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ABSTRACT: 

A lumped plasticity model for the nonlinear dynamic analysis of three-dimensional reinforced concrete (r.c.) 
frames subjected to bi-directional ground motion is proposed. The frame members are idealized by means of 
two parallel elements, one elastic-perfectly plastic and the other linearly elastic, assuming a bilinear moment-
curvature law. An interaction surface axial force-biaxial bending moment is considered for the end sections of 
each frame member. The nonlinear dynamic analysis is performed using a step-by-step procedure based on a 
two-parameter implicit integration scheme and an initial-stress like iterative procedure. At each step, the 
elastic-plastic solution is obtained adopting the Haar-Kàrmàn principle. A single-storey r.c. three-dimensional 
frame subjected to a bi-directional artificial ground motion, whose response spectrum matches on average that 
adopted by Eurocode 8 for a medium risk seismic region and a medium soil, is assumed as test structure for the 
numerical investigation. The sensitivity of the model to changes in input parameters is investigated. Moreover, a
refined fibre model is considered to validate the proposed numerical model.  

KEYWORDS: Three-dimensional structure, nonlinear seismic analysis, bi-directional
motion, axial force-biaxial flexure interaction, lumped plasticity model 

1. INTRODUCTION 
 
In conventional earthquake design it is accepted that the structure could undergo inelastic deformations under
strong ground motions. However, these deformations must be limited in order to avoid local or global collapse 
as well as to limit the structural damage. A nonlinear dynamic analysis to predict the three-dimensional 
structural response is needed for irregular distributions (in plan and/or in elevation) of mass, stiffness and 
strength and/or simultaneous horizontal bi-directional ground motion (Magliulo and Ramasco, 2007).  
Many nonlinear three-dimensional models of reinforced concrete (r.c.) slender frame members have been 
proposed in literature. They can be classified according to the level of discretization and modeling. Finite 
element models require the availability of triaxial concrete stress-strain models (e.g. Kwon and Spacone, 2002), 
providing an accurate representation of the nonlinear response, but the computational effort restricts their 
application to structural sub-assemblages. In the last few years, fibre models, able to follow the detailed 
stress-strain response at a large number of points over several cross-sections of a frame member, have become 
popular due to their combination with adaptive nonlinear analysis, applying automatic mesh refinement when 
and where necessary (Izzudin et al., 2002). This approach represents a good balance between reliability of the 
results and computational efficiency. A representation of the key features of the structural behaviour can be 
obtained using r.c. member-type models. Specifically, the multisurface plasticity model (Powell and Chen, 1986) 
and the nine-spring model (Lai et al., 1984) represent classical examples of lumped plasticity models. Recently, 
a model based on lumped damage mechanics and theory of fracture has also been proposed (Marante and 
Flórez-López, 2003). Finally, distributed plasticity models in which member inelasticity is monitored at several 
sections along the frame member have also been proposed in literature (e.g. Sfakianakis and Fardis, 1991). 
The aim of this work is the formulation of a lumped plasticity model for r.c. frame members with axial 
force-biaxial flexure interaction, which represents a suitable compromise between simplicity and accuracy. A 
finite element code for the nonlinear dynamic analysis of three-dimensional r.c. framed structures subjected to 
bi-directional ground motion is prepared, investigating the sensitivity of the proposed model to variations in
input parameters. Moreover, the model is tested using results from a refined fibre model (SeismoSoft, 2008). 
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2. THREE-DIMENSIONAL R.C. FRAME MODELING  
 
2.1. Discretization in space and time 
The spatial framed structure shown in Figure 1a is discretized as an n-degree-of-freedom system (six for each 
joint), with translational nodal masses mk. The dynamic equilibrium equation can be expressed as: 
                                ( ) ( ) ( )[ ] ( ) 0pufuCuM =−++ tttt &&&                               (2.1.1)

where M is the mass diagonal matrix, C is the viscous damping matrix in the classical Rayleigh form, f is the 
elastic-plastic reaction vector (i.e., the vector collecting bending moments with equilibrating shear forces, 
elastic axial forces and torsional moments shown in Fig. 1a) and p represents the external load vector including 
the inertial forces corresponding to the horizontal ground accelerations along the global axes X and Y: 

                     γζ−γψ= sen)t(cos)t()t(u ggg
&&&&&&    ;   γζ+γψ= cos)t(sen)t()t(v ggg

&&&&&&            (2.1.2a,b)

referring to a biaxial ground motion rotated at an angle γ (i.e., gψ&& and gξ&& ground accelerations shown in Fig. 1a). 
 

 
 (a)                                           (b) 

Figure 1 Structural discretization of a spatial frame (a) and natural strain modes of a beam element (b) 
 
Time integration is carried out by using an implicit two-parameter scheme that proves to be optimal with regard 
to numerical instability, round-off error effects and beat phenomena between spurious solutions (Casciaro, 
1975). The scheme operates by dividing the time axis in successive intervals Δt=t1-t0, employing for each 
interval the following recurring equations:   
  ( ) ( ) ( ) ( ) ( ) ( ) 1001110001 tΔ21tΔ21;tΔ21tΔ21 uuuu0pspsqq && β++β−+==−α++−α−+−  (2.1.3a,b)

where q(=M u& ) is the moment vector and α and β depend on time step Δt and maximum and minimum vibration 
periods of the structure. 
 
2.2. Elastic solution 
The beam element of a three-dimensional frame (Fig. 1a) is described by the coordinates of the two nodes (i and 
j) associated with the end sections, in the space defined by the global Cartesian system (X, Y, Z). In the local 
system (x, y, z) the kinematical behaviour can be conveniently expressed as a combination of the six natural 
strain modes shown in Figure 1b (Argyris et al., 1979): 

                                    { } ene
T

xezszeysyxn ,,,,, uBu =Θχχχχε=                                  (2.2.1)
where Bne is a compatibility matrix (Mazza, 2007) and ue is a vector collecting the local components of the 
end-section displacements and rotations shown in Figure 1a:  
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In terms of natural strain modes, the expression for the beam element strain energy becomes: 
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where EA is the axial stiffness, EIy and EIz represent the flexural stiffness around the local axes y and z and GJt

is the torsional stiffness, while the shear deformations are neglected (i.e., GA*
y→∞ and GA*

z→∞). This 
formulation allows the element stiffness matrix to be expressed in a diagonal form (Argyris et al., 1979).      
                      
2.3. Elastic-plastic solution 
Each frame member is idealized by means of a two-component model, constituted of two parallel elements one 
elastic-perfectly plastic and the other linearly elastic, assuming a bilinear moment-curvature law; axial and 
torsional strains are assumed to be fully elastic (i.e., N=NE and Mt=MtE are assumed). Moment-curvature 
relationships for the plastic hinges lumped at the end cross sections (i and j), in which inelastic deformations are 
assumed to occur, are determined by the correspondence to the elastic axial force (NE) due to static and dynamic
(seismic) loads, referring to a three-dimensional axial force-biaxial bending moment elastic domain.  
At each step of the analysis the elastic-plastic response of a generic frame member, once the initial state and the 
incremental load in the step are known, can be obtained as a solution of the Haar-Kàrmàn principle, adopting an 
initial-stress like iterative procedure (Casciaro, 1975). Among the stress states verifying dynamic equilibrium 
conditions (Eq. 2.1.1), the step-end elastic-plastic solution m={myi, mzi, myj, mzj}T has the minimum distance 
from the elastic solution mE={mEyi, mEzi, mEyj, mEzj}T, minimizing the complementary energy: 
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under the constraints represented by the plastic admissibility conditions: 
    zzjzyjyyzzizyyiy MmM;MmM;MmM;MmM ≤≤−≤≤−≤≤−≤≤−      (2.3.2a,b,c,d)
The yielding moments at the end cross sections (i and j), corresponding to biaxial bending, are evaluated with 
respect to the principal axes y (My(NE)) and z (Mz(NE)), according to the expression: 

                          ( ) ( ) 01MMMM pzzpyy =−+ αα                               (2.3.3) 

where Mpy(NE) and Mpz(NE) represent the yielding moments corresponding to single bending and the exponent α
is variable depending on the elastic axial force NE (Eurocode 2, 2004: 1≤α≤2). More specifically, if the elastic 
solution lies in the elastic domain then m=mE; otherwise, the elastic-plastic solution (m) is determined by the 
following three step sequence (Mazza, 2007): 
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The solution at the node i (j) is evaluated taking into account the elastic-plastic response at the node j (i). In 
particular, Equations (2.3.5a,b) and (2.3.6a,b) are solved iteratively until the difference, in two consecutive loops 
(k-1 and k), between the yielding moments corresponding to biaxial bending, obtained by the return mapping by 
closest-point projection to the elastic domain, is less than a prefixed error at the end sections i and j. 
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Finally, the elastic-plastic response of the structure is obtained by the Equations (2.1.3a,b), iteratively solved in 
terms of the velocity at the step end ( )j(

1u& ), by referring to the following residual iteration scheme: 
            ( ) { } ( ) { } )j((j)

1
1)(j

1
(j)
1000

(j)
1

(j) ;tt Hruupspsqqr −=−Δα+21+−Δα−21+−= +
1 &&            (2.3.7a,b) 

in which the index j is referred to the generic iteration loop, s=f[u]+Cu&  and H is the iteration matrix 

                     ( )( ) ( ){ } 12 tΔ21tΔ2121
−

α++β+α++= CKMH E                        (2.3.8)
where KE is the elastic stiffness matrix. The iteration loops are stopped when an appropriate measure of the 
equilibrium error (r(j)) becomes less than a prefixed tolerance. 
 
 
3. TEST STRUCTURES  
 
A single-storey r.c. three-dimensional frame with symmetric plan is assumed as test structure for the numerical 
investigation. Two cases are examined, referring to columns with square (Fig. 2a: Ac=40cm×40cm) and 
rectangular (Fig. 2b: Ac=40cm×70cm) cross sections and supposing rigid girders with elastic behaviour. More 
specifically, the test structures shown in Figure 2 are designed according to the provisions of Eurocode 8 (2003), 
assuming: high ductility class (behaviour factor, q=5); medium-risk seismic region (peak ground acceleration, 
PGA=0.25g) and medium soil class (class C, subsoil parameter S=1.15). The gravity load Nv, corresponding to a 
normalized axial load νv(=Nv/(Acfc)) of the column equal to 0.2, is applied in each joint of the test structure
where a lumped mass mv(=Nv/g) is considered. A cylindrical compressive strength (fc) of 25 N/mm2 for the 
concrete and yield (fsy) and ultimate (fsu) strengths of 450 N/mm2 and 540 N/mm2 for the steel are considered. 
The longitudinal reinforcement ratio ρs(=As/Ac) of each column is assumed equal to 2%, corresponding to 16φ16 
mm (As= 32cm2) and 28φ16 mm (As= 56cm2), respectively for square and rectangular cross sections (Fig. 3).  

         (a) Columns with square cross section                  (b) Columns with rectangular cross section 
Figure 2 R.c. framed structures (dimensions in cm) 

 

 
(a)                       (b) 

Figure 3 Details of longitudinal and transverse reinforcements 
of a column: (a) critical end zones; (b) central zone

Table 1 First yielding axial loads and single bending 
moments for the critical end zones of a column 

 

 Square section Rectangular section 
Nt 1437 kN 2514 kN 
Nc 5860 kN 10317 kN 
Ny 2400 kN 4200 kN 
Nz 2400 kN 4900 kN 

M′py 185 kN.m 358 kN.m 
M′pz 185 kN.m 507 kN.m 

M′py,max 380 kN.m 723 kN.m 

M′pz,max 380 kN.m 1136 kN.m 
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At the critical end regions of the columns, whose length is assumed according to Eurocode 8 (2004), the spacing 
of hoops and cross ties is assumed to be equal to 10 cm, ensuring that the distance between consecutive 
longitudinal bars engaged by hoops or cross ties does not exceed 20 cm (Fig. 3a). Along the central region of the 
columns only hoops with a spacing of 20 cm are considered (Fig. 3b). The monotonic constitutive law proposed 
by Mander et al. (1988) is assumed for the concrete, with the ultimate concrete strain modified according to 
Montejo and Kowalsky (2000). Stress-strain curves for square and rectangular cross sections of the columns, 
distinguishing between unconfined and confined concrete, are considered constructing the elastic domain axial 
load-biaxial bending moments. More specifically, in Table 1 the parameters corresponding to the first yielding 
of the longitudinal reinforcement (εsy=fsy/Es=0.00218), for the square and rectangular cross sections of the 
critical end regions, are reported: tensile axial load (Nt); single bending moments for an axial load equal to zero 
(M′py and M′pz, with respect to y and z axes); maximum single bending moments (M′py,max and M′pz,max, with 
respect to y and z axes) and corresponding axial loads (i.e., Ny and Nz); moreover, the compression axial load 
(Nc) corresponds to a concrete deformation equal to εc0=0.002 (≅εsy). 
 
 

3. NUMERICAL RESULTS 
 

In order to study the behaviour of the test structures, whose properties are illustrated in the previous section, a 
computer code has been prepared for the nonlinear dynamic analysis of r.c. three-dimensional frames subjected 
to biaxial ground motion in the horizontal direction. In particular, all the results have been obtained using as 
seismic input an artificial ground motion (labelled as EC8.C) along the global axes X and Y (Fig. 2). This 
ground motion, having a duration of 12 seconds, is generated by using the computer code SIMQKE (Gasparini 
and Vanmarcke, 1976), so as to be stationary in frequency in the range of vibration periods 0.05s÷2s, with a 
value of PGA close to that of the target EC8 spectrum for medium soil and medium risk seismic region (i.e., 
PGA=1.15×0.25g=0.29g). In the Rayleigh hypothesis, the damping matrix is assumed as a linear combination of 
the mass matrix and the elastic stiffness matrix, assuming a viscous damping ratio equal to 5% with reference to 
the first (translational) and third (torsional) vibration periods of the structure. 
Firstly, a sensitivity study was performed to define the necessary accuracy of the input parameters for the 
application of the proposed lumped plasticity model (LPM). The sensitivity of the model was considered in 
terms of displacement time histories at the top of the columns, along the global axes X and Y. More specifically, 
in Figure 4 the curves for square (Fig. 4a) and rectangular (Fig. 4b) cross sections, assuming three values for the 
flexural stiffness of the columns, to account for the different effect of the axial force on the cracking (EI=rEIg,
where the coefficient r≤1 is adopted for reducing the geometric flexural stiffness EIg) are reported.  
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Figure 4 Effect of change in the flexural stiffness (EI) on the response of the lumped plasticity model (LPM) 
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The secant stiffness of the equivalent bilinear moment-curvature law for the gravity loads only (Nv), connecting 
the origin with the yield point (i.e., EIy(z)=0.47EIg,y(z) for square cross section, EIy=0.52EIg,y and EIz=0.47EIg,z for 
rectangular cross section), is considered as reference value. As can be observed, the response is sensitive to the 
choice of the flexural stiffness EI in terms of both maximum displacement and waveform and periodicity of the 
time history. These effects proved to be more evident in the case of columns with rectangular cross section (Fig. 
4b), characterized by a high seismic response (i.e., having a maximum drift angle of 2%). 
Response sensitivity of the LPM for the effect of change in hardening ratio (p) of the bilinear moment-curvature 
law, expressed as a percentage of the geometric flexural stiffness EIg, is also investigated. Specifically, curves of 
top displacement for rectangular cross section are reported in Figure 5, assuming three values of the hardening 
ratio (i.e., p=0, corresponding to an elastic-perfectly plastic behavior, 2.5% and 5%). As expected, the effect is 
limited mainly to maximum values, for seismic intensities strong enough that yielding and plastic deformations 
occurred. Analogous results, which are omitted for sake of brevity, are also obtained for square section. 
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Figure 5 Effect of change in the hardening ratio (p) on the response of the lumped plasticity model (LPM) 

Finally, the numerical results obtained by using a refined fibre model (FM) available in the computer program
SeismoStruct (SeismoSoft, 2008) are used for testing the reliability of the proposed lumped plasticity model 
(LPM). To this end, time histories of displacement at the top of the columns, along the global axes X and Y 
(Figs. 6a and 7a,b), and base shear of the more stressed column, along the local axes y and z (Figs. 6b and 7c,d), 
are plotted for square (Fig. 6) and rectangular (Fig. 7) cross sections. 
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Figure 6 Comparison between LPM and FM for columns with square section: (a) top displacement along the global axis 

X(≡Y); (b) base shear of the more stressed column along the local axis y(≡z) 
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More specifically, in the FM each column is modeled with six sub-elements, two for each critical end region 
(with a length equal to 1/8 of the column height) and two for the central region (with a length equal to 1/4 of the 
column height). The concrete cross section is subdivided in 400(=20x20) and 700(=20x35) fibres, respectively, 
for square and rectangular shapes. The nonlinear cyclic behaviour of the concrete is modeled using the Mander 
model, distinguishing between unconfined and confined concrete, for both critical-end and central regions of 
each column, whereas the steel is modeled using the Menegotto and Pinto model. Moreover, in the LPM the 
flexural stiffness EI is assumed to be equal to the above mentioned secant values and a hardening ratio p=5% of 
the geometric flexural stiffness EIg is considered. From the comparison of results it is evident that the LPM 
provides a satisfactory estimation of the seismic response in all the examined cases. However, it is worth 
mentioning that the LPM simulates only the essential aspects of the hysteretic behaviour. 
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Figure 7 Comparison between LPM and FM for columns with rectangular section: (a, b) top displacements along the global 

axes X and Y; (c, d) base shears of the more stressed column along the local axes y and z 
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4. CONCLUSIONS  
 
A lumped plasticity model (LPM) for the nonlinear dynamic analysis of three-dimensional r.c. frames subjected 
to bi-directional ground motion is proposed and a finite element code is prepared. The results obtained in this 
study permit to be drawn the following conclusions. 
The nonlinear seismic response of the LPM is sensitive to the choice of different input parameters (e.g., flexural 
stiffness reduction factor and hardening ratio of the bilinear moment-curvature law), influencing both maximum 
value of the response parameters and waveform and periodicity of the corresponding time histories. From the 
comparison with a refined fibre model (FM), available in the computer program SeismoStruct, it can be seen that 
the LPM provides a satisfactory simulation of the flexural hysteretic behaviour of r.c. frame elements with axial 
force-biaxial bending moments interaction. The LPM is relatively simple and, therefore, can be efficiently 
incorporated in the nonlinear dynamic analysis of complex multi-storey r.c. framed structures.  
Further studies are needed to investigate its reliability and accuracy in predicting the nonlinear seismic response, 
including the refinements needed to take into account the degradation of the hysteretic capacity. 
 
ACKNOWLEDGMENTS 
The present work was financed by R.E.L.U.I.S. (Italian network of university laboratories of earthquake 
engineering), according to “convention D.P.C. – R.E.L.U.I.S. 11/07/2005 (item 540) research line no. 3”. 
 
REFERENCES  
 
Argyrys, G.H., et al. (1979). Finite element method - the natural approach, Computer Methods in Applied 
Mechanics and Engineering 17/18, 1-106. 
Casciaro, R. (1975). Time evolutional analysis of nonlinear structures. Meccanica 3:X, 156-167. 
Eurocode 2 (2004). Design of concrete structures - part 1-1: general rules and rules for buildings. C.E.N., 
European Committee for Standardisation. 
Eurocode 8 (2003). Design of structures for earthquake resistance - part 1: general rules, seismic actions and 
rules for buildings, C.E.N., European Committee for Standardisation. 
Gasparini, D. and Vanmarcke, E. (1976). Simulated earthquake motions compatible with prescribed response 
spectra. Massachusetts Institute of Technology, Department of Civil Engineering. 
Izzudin, B.A., Siyam, A.A.F.M. and Lloyd Smith, D. (2002). An efficient beam-column formulation for 3D 
reinforced concrete frames. Computer and Structures 80, 659-676.  
Kwon, M. and Spacone, E. (2002). Three-dimensional finite element analyses of reinforced concrete columns. 
Computer and Structures 80, 199-212.  
Lai, S.-S., Will, G.T. and Otani, S. (1984). Model for inelastic biaxial bending of concrete members. Journal of 
Structural Engineering 110:11, 2563-2584.  
Magliulo, G. and Ramasco, R. (2007). Seismic response of three-dimensional r/c multi-storey frame building 
under uni- and bi-directional input ground motion. Earth. Engineering and Structural Dynamics 36, 1641-1657. 
Mander, J.B., Priestley, M.J.N. and Park, R. (1988). Theoretical stress-strain model for confined concrete. 
Journal of Structural Engineering 114:8, 1804-1825.  
Marante, M.E. and Flórez-López, J. (2003). Three-dimensional analysis of reinforced concrete frames based on 
lumped damage mechanics. International Journal of Solids and Structures 40, 5109-5123.  
Mazza, F. and Mazza, M. (2007). An iterative method for the elastic-plastic dynamic analysis of spatial framed 
structures (in italian). 24° National Conference A.I.C.A.P.2007 (Italian Association Reinforced and Prestressed 
Concrete), Salerno (Italy), 223-230. 
Montejo, L.A. and Kowalsky, M.J. (2007). Set of codes for the analysis of reinforced concrete members. 
Technical report no. IS-07-01, North Carolina State University. 
Powell, G.H. and Chen, P.F.-S. (1986). 3D beam-column element with generalized plastic hinges. Journal of 
Engineering Mechanics 112:7, 627-641.  
SeismoSoft (2008). SeismoStruct – A computer program for static and dynamic nonlinear analysis of framed 
structures. Available from URL: http//www.seismosoft.com. 
Sfakianakis, M.G. and Fardis, M.N. (1991). Nonlinear finite element for modeling reinforced concrete columns 
in three-dimensional dynamic analysis. Computer and Structures 40, 1405-1419.  


