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ABSTRACT : 

Artificial neural networks (ANN) were used to estimate strong ground motion duration and response spectra 
using accelerograms recorded in and around the Mexican cities of Puebla and Oaxaca. These networks were 
developed using a back propagation algorithm and multi-layer feed-forward architecture in the training stage. 
 
For strong ground motion duration, we integrate data considering that the phenomenon is characterized by 
seismic magnitude, epicenter distance, site period and azimuth. Results were compared with those obtained from 
the Arias method and Reinoso&Ordaz equation. Regarding to response spectra, besides the previous parameters 
we also considered a vector of spectral amplitudes. In order to evaluate the forecasting capacity of the ANN 
strong ground motion duration and response spectra were estimated from earthquakes whose data were not 
included in the training phase. An acceptable concordance is observed between them and those provided by the 
ANN.  
 
Overall, the results presented show that ANN provide good and reasonable estimates of strong ground motion 
duration and response spectra in each one of the three orthogonal components of the accelerograms recorded in 
the cities of Puebla and Oaxaca. Furthermore, the networks have a good predictive capacity to estimate duration 
and response spectra. 
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1. INTRODUCTION 
 
Based on the processes that carry out into the human brain and inspired by its functioning several researchers 
have been working with the theory of ANN, which emulate the behavior of the Biological Neural Networks. 
ANN have provided a different alternative to deal with problems, in which traditional methods cannot offer a 
reliable solution. In Mexico, ANN have been used to face problems related to seismic response of soils, 
buildings, tunnels and so on (Romo et al., 1999 and García, et al., 2003). 
 
For the Mexican cities of Puebla and Oaxaca (figure 1), herein we present two ANN approaches. The first one 
estimates strong ground motion duration in the former city; where we developed independent ANN for each 
seismic station. We considered that magnitude, epicenter distance, azimuth and period site are the main 
parameters that characterized the strong motion duration. The second approach deals with the evaluation of the 
response spectra in Oaxaca City. In this case, apart from the parameters mentioned we also included a vector 
integrated by the response spectra amplitudes of several accelerograms recorded. In both proposals, time-series 
were obtained from The Mexican Strong Ground Motion Data Base (Alcántara et al., 2000). 
 

 
 

Figure 1 Location of Mexico and its States of Puebla and Oaxaca 
 
2. ARTIFICIAL NEURAL NETWORKS 
 
An artificial neural network can be described as a model which processes information that emulates the human 
nervous system to solve complex problems. Those kinds of networks learn, through a training stage, the way in 
which two o more patterns are associated. The networks can then make generalizations from the knowledge 
acquired in the learning phase and can forecast specific behaviors when confronted with conditions different 
from those identified in the patterns. 
 
A neuron is the fundamental element in a biological neural network and its main feature is that it communicates 
with other neurons using chemical or electric signals. This produces a change in the condition of the neuron 
thereby passing from an active to a non active stage or vice versa. In an artificial network processor elements are 
represented by nodes which can have a large number of connections, as do neurons in biological networks. 
Multiple connections allow the integration of systems that can acquire adaptive knowledge through a self 
organization process. In an artificial neural network each node has a value associated to it and this value is the 
sum of the inputs that arrive to the node following weighted pathways. The values reaching the node are also 
measures of the strengths of the connections with other nodes. According to Figure 2 the value associated to a 
typical node j is given by: 

ITj  = I1W1 + I2W2 +… IiWi…..+ InWn (2.1) 
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Where ITj  is the total value associated to node j; IiWi is the dot product between input Ii and its associated weight, 
Wi. The total input signal is reduced by a previously fixed threshold value and then passed by a transfer function 
that evaluates if the node becomes active; if it does, the node transmits its outgoing signal to other units. 
 
The ANN used in this paper is a Multilayer Perceptron (MLP) (Shepherd, 1997), having an architecture based on 
an arrangement of nodes contained in two hidden layers and one output layer. The input layer transmits 
information from the outside into the first hidden layer and the process continues up to reach the output layer. 
Each unit in a layer is connected to all the nodes of the following layer, but elements in the same layer are not 
interconnected; i. e., it is a feed-forward ANN because the signals only propagate in the direction that goes from 
the input into the two hidden layers and then to the output layer. Regarding the learning rule, a back propagation 
algorithm with a sigmoid transfer function as an initial stage was used to explore the power of the ANN. 
 
 

 

Figure 2 Processing unit and ANN architecture 
 
 

A well trained ANN requires that the phenomenon to be modeled be known as amply as possible, in order to 
select accurately the parameters that define it or influence it. It is also very important to have an adequate data 
base that includes as many characteristic cases of the phenomenon being considered as can be found and in which 
the defining parameters are actually involved. 
 
3. ARTIFICIAL NEURAL NETWORKS TO ESTIMATE STRONG GROUND MOTION DURATION 
 
The Accelerograph Network of Puebla city is integrated by 11 seismic stations which have recorded more than 
100 accelerogram records from 50 earthquakes having magnitudes varying between 3.7 and 8.1. The historical 
peak ground acceleration is 279 cm/s2 recorded during the June 15, 1999 Tehuacan earthquake, M=6.5 (Singh, et 
al., 1999). 
 
3.1. Data set and Training stage 
 
In developing the ANN to estimate strong ground motion duration we integrated a data base comprised by 
records from three soft soil stations of Puebla city (PBPP, SRPU, SXPU) and rock outcrop records from the 
Aceelerograph Network that the Engineering Institute of the Universidad Nacional Autónoma de México 
(UNAM), operates along the Pacific coast in the Mexican Subduction Zone. We considered that records on soil 
sites contain information related to local soil conditions and site effects and rock outcrop records obtained at sites 
near epicentral regions contain information about seismic sources; whereas records far from epicentral regions 
have characteristics associated to distance or trajectory. Figure 3 shows the locations of the seismic stations 
which are represented by small squares and seismic epicenters are illustrated by inverted triangles. 
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Figure 3 Location of Epicenters and Seismic stations 
 
For training phase, we considered in the input layer of the ANN four parameters: Magnitude (M), Epicenter 
Distance (R), Azimuth (A) and Site Period (T). The values of the first two were obtained from catalogues 
furnished by the Mexican Seismological Service. R and A were established from the geographical coordinates 
of each epicenter given in that same catalogues and from the coordinates of each individual station. Local site 
periods (T) at stations in the city of Puebla were obtained from response spectra and from horizontal to vertical 
component Fourier spectrum quotients. For rock sites T was considered equal to 0.2 seconds. The output layer 
has one node for strong motion ground duration (DA), which is calculated using the Arias intensity measure 
(Arias, 1970). This duration is defined as the time over which a certain arbitrary percentage of the total motion 
energy is delivered. The Arias intensity is given by: 
 

∫=
t

x dtta
g

Ia
0

2 )(
2
π

 (3.1) 

 
Where: Ia is the Arias intensity measure; aX(t) acceleration amplitude; t is the record duration and g the 
acceleration of gravity. 
 
If one assumes that strong motion duration is the time span over which 90 percentage of the seismic energy is 
delivered at a locality, then such duration DA can be expressed as:  
 

595 ttDA −=  (3.2) 
 
Where t95 and t5 are the times at which 95 % and 5 % of the energy is delivered during a seismic event. The values 
of DA were computed using domestic software (Ruiz, 2002). 
 
Independent ANN were developed for motions recorded along each of the three orthogonal components (i.e. 
north-south, east-west and vertical) for each station. For training stages, we used the Neuronal Network System 
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for Windows, Thinks Pro, 2005, which is based on interactive processes that permit to adjust the number of 
nodes in the hidden layers. Table 3.1.1 presents the final arrangements for PBPP station. The values included in 
the last column have the format I-H1-H2-O, in which letter I indicates the number of input nodes or training 
patterns, H1 and H2 are the number of the nodes of the corresponding hidden layers. Finally, letter O establishes 
the number of nodes in the output layer. For the architecture of all ANN developed here, we always set the 
values of the parameters I and O to 4 and 1. Similar arrangements were prepared for training the ANN for 
stations SXPU and SRPU. 
 

Table 3.1.1 ANN Architectures at PBPP station 
Component Arrangement 

 I - H1 - H2 – O 
east-west 4 - 10 - 10 – 1 

north-south 4 - 15 - 15 – 1 
vertical 4 - 15 - 10 – 1 

 
3.2. Results from trial runs 
 
ANN were evaluated using data that not were used during the training stage. Such data include two important 
events recorded in Puebla, the June 15, 1999 (M=6.5) and the September 30, 1999 (M=7.5) earthquakes. In order 
to compare our results with a different proposal we also include the durations given by the equation 3.3 (Reinoso 
and Ordaz, 2001).  
 

)5.0)(168.4()07.0036.0(01.0& −−+−+= TMRMeD d
M

OR            (3.3) 
 
The first term on the right hand side is related to the seismic source and magnitude (M); the second one reflects 
the dependency of duration on the radial distance (Rd) to the observation point and the last one includes site 
dependent effects through T, the soil site period.  
 
Strong ground motion durations yielded by the neural networks (DANN) are, in general, similar to those obtained 
with Arias’ proposal. Regarding to results given by equation 3.3 and the ANN, it can be stated that they are fairly 
similar except for September 30, 1999 in station PBPP and June 15, 1999 in SRPU. The former gives a longer 
duration than the others and according to figure 4 such duration seems not to be realistic. Table 3.2.1 includes the 
results gotten, in seconds, for 3 events in station PBPP and 1 in station SRPU.  
 

 
 

Figure 4 Duration of strong ground motion at station PBPP 
 

Table 3.2.1 Strong ground motion durations at PBPP and SRPU stations 

Record M R 
(Km) 

A 
(rad) 

T 
(s) 

east-west  north-south vertical 
DA DANN DR&O DA DANN DR&O DA DANN DR&O 

PBPP8904.251 6.8 313 3.6107 1.1 69 73 74 50 72 74 55 78 74 
PBPP9906.151 6.5 121 2.4241 1.1 24 32 36 29 37 36 35 27 36 
PBPP9909.301 7.5 365 2.7963 1.1 72 87 103 80 80 103 86 105 103 
SRPU9906.151 6.5 118 2.3405 0.7 19 16 29 26 18 29 26 31 29 
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4. ARTIFICIAL NEURAL NETWORK TO ESTIMATE RESPONSE SPECTRA 
 
Herein we include a proposal to estimate elastic response spectra using records obtained in the Accelerograph 
Network of Oaxaca city. The array has 7 stations deployed in different subsoil conditions, which have collected 
around 170 accelerograms produced by 67 earthquakes with magnitudes varying from 4.1 to 7.8. The maximum 
acceleration registered up to now by the array is 370 cm/s2 and was recorded during the September 30, 1999 
(M=7.5) earthquake (Singh, et al., 2000).  
 
4.1. Data set and Training stage 
 
In developing ANN we integrate data set using records from 5 stations: OXLC, OXFM, OXTO, OXAL and 
OXPM. The former is placed on rock site and the others on soils. As training patterns we selected the 
following: Seismic Magnitude (M), Epicenter Distance (R), Azimuth (A) and a vector (ti), which is defined by 
time increments associated to the response spectra values. Finally, a vector (ai) that is integrated by the spectral 
amplitudes associated to the corresponding values of ti. According to the above, we define the input layer with 
the parameters M, R, A and ti, and the output node or target by the vector ai. The elastic response spectrum of 
acceleration was estimated using Degtra System (Ordaz and Montoya, 2005). For the spectral ordinates, we 
computed 50 values, for periods between 0 to 3 seconds, and we considered 5 percentage of critical damping. 
 
According to the epicenter distribution of the earthquakes recorded by the Accelerograph Network of Oaxaca 
city we proceeded to classify them into superficial and deep groups as is shown in figure 5. Inverted triangles 
represent deep earthquakes and circles superficial earthquakes. Then we developed independent ANN for each 
station and for each group defined. 
 
All spectral amplitudes of the response spectra, used as a pattern training, were normalized dividing each one to 
the corresponding spectral amplitude value for T=0 (i.e. the ground peak acceleration recorded). That was done 
in order to facilitate the learning process to the ANN. The final architectures are integrated by 4 training patters 
in the input layer, two or three hidden layers with up to 60 nodes each and one node for the output layer. 
 

 
 

Figure 5 Location of Superficial and Deep earthquakes 
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4.2. Results from trial runs 
 
In figure 6 we present an example of the response spectra obtained for OXPM station. Left side shows the result 
during training stage for a superficial earthquake. In this case, we can appreciate that the ANN achieves his 
aim, because it is completely similar to the real response spectra. Right side depicts the predicted response 
spectra for another superficial earthquake. That event was not included into the data set used during the training 
stage. Real and ANN response spectra are very similar. It is important to remark that the spectral amplitudes are 
normalized. For that matter to get the real response spectra, it will be necessary to multiply such amplitudes by 
the corresponding value of the ground peak acceleration. 

 
 

Figure 6 ANN Response Spectra obtained in OXPM station during training and testing stages 
 
CONCLUSIONS 
 
Artificial neural networks were used to estimate strong ground motion duration and response spectra. These 
networks were developed using a back propagation algorithm and multi-layer feed-forward architecture in the 
training stage. 

Overall, the results presented here show that artificial neural networks provide good and reasonable estimates of 
strong ground motion duration and response for the accelerograms recorded in the cities of Puebla and Oaxaca. 
Furthermore, the networks have a good predictive capacity. 

Finally, it is important to highlight that the capabilities of an artificial neural network ultimately depend on 
various factors that demand the knowledge of the user about the problem under consideration. This knowledge is 
essential for establishing the pattern parameters that best represent it. Experience to set and to select the better 
network architecture (including learning rules, transfer functions, etc) and the integration of training and test data 
sets are also very important. 
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