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ABSTRACT : 
A method to account for non-linear effects in the response of layered soil deposits is presented. This method is 
applied to modify the linear transfer function, in fact the amplitudes of the transfer function, called empirical 
transfer function. Actually, reductions and shifts to low frequencies present in the amplitudes of transfer 
functions under non linear conditions are regarded. These reductions and shifts are done separately.  First, 
changes in both, shear waves velocity and material damping as a function of the peak ground acceleration in 
rock, are established. Then a spectral function of non linearity is computed. This function is the ratio between 
the inelastic transfer function, disregarding the shifts to low frequencies (increments in wave number), and the 
elastic one. The shifts in the frequency domain are explicitly introduced by means of a proper frequency scaling. 
The method is exact for homogeneous single layers. The method is done in seven steps described in the body of 
this work. Several results, as non linear transfer function, spectral ratios and synthetic seismograms are 
presented to show how easy and useful the method is.  
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1. DYNAMIC GROUND RESPONSE  

The effects of the local soil conditions can considerably affect the seismic motion and, for this reason, the 
structural response. These also called site effects produce significant space variations of the ground motion, 
including amplifications and/or attenuations of their intensity as well as modifications of their duration and 
frequency content, which have a determining influence in the structural response. Higher dynamic 
amplifications that the ground motion undergoes usually appear where the rigidity contrast of grounds are very 
pronounced. This generally happens near the free surface, especially in areas of sedimentary deposits or alluvial 
valleys. The horizontal interfaces between layers and the lateral irregularities produce a phenomenon of multiple 
diffraction of seismic waves, that generates constructive and destructive interferences, and that as well, originate 
amplifications and attenuations, respectively. In order to evaluate the effects of amplification of the seismic 
motion in ground deposits it would be desirable to know the site transfer function. The experimental 
determination consists in the spectral ratio between the motion in the surface and the one in the bedrock. Fourier 
Amplitude Spectra (FAS) of both motions are used. In the absence of seismic records, the transfer function 
usually is determined with the one-dimensional wave propagation model. Only in special cases it is made use of 
models of greater complexity. This theoretical model is the most adequate in seismic engineering for the study 
of the site effects. In particular, its simplicity allows including, approximately, the effects related to the 
nonlinear behavior of the dynamic properties of the ground subjected to intense earthquakes. 
 
The response of a soil deposit subjected to seismic excitation is function of several factors that are related to 
geometry and the material dynamic properties. For practical aims, nevertheless, this complexity can be reduced 
if the site effects are exclusively related to two parameters that measure the most relevant features of the soil 
deposit. These are the dominant period of vibration and the effective velocity of propagation of the site. For this, 
it is common to make use of an approach that consists of replacing the stratigraphic profile by a simple layer 
with equal effective velocity and dominant period to those of real stratigraphy. This idealization is adapted for 
layered media noticeably horizontal that respond essentially like a homogenous mantle. 
 
The model of waves propagation commonly used to quantify the seismic motion amplification in soft soils with 
respect to which it would be had in firm ground, is a ground deposit formed by a single layer on a halfspace, 
excited by the vertical incidence of shear waves. Suppose, as a reference system, that this model has the vertical 
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coordinate z , positive downwards, with the free surface of the layer in H-z  , and the interface between the 
layer and the halfspace in 0z  . In addition, suppose that s  and 0  are the mass densities of the soil and 
the rock, respectively, and that s  and 0  are the shear wave propagation velocities of the ground and the 
rock, respectively. The impedance contrast is given by s s r r      , and the wave number is k    . If 
the excitation or incident wave field is oV  , the transversal displacement, sv , in the layer can be written as 

   
1 i  t

s o s s sv 2V cos k z H cos(k H) i sen(k H)  e
            (1.1) 

2. NON-LINEAR BEHAVIOR OF THE SOIL  

To account for nonlinear behavior of materials in the studies of dynamic amplification of the ground motion, is 
necessary to fit the more relevant dynamic properties of the soil with the strain levels expected for the design 
limit states, in particular, the collapse prevention. In the most of the tests it is verified that the shear stiffness 
modulus and the internal damping are the parameters more affected by the non-linearity of the soil. In addition, 
these parameters are those of greater influence in the ground seismic response. A direct way to include the 
non-linearity of the soil is to prescribe the cyclical relations stress-strain with base in the experimental evidences. 
It is necessary to introduce two concepts: skeleton curve and unload-reload criterion. The skeleton curve is the 
stress-strain relation that is obtained during the initial charge. For infinitesimal deformations it must reflect the 
linear behavior. In fact, the tangent to this curve in the origin has as slope the initial or maximum stiffness 
modulus. As the deformation increases, the slope of the tangent to the skeleton curve is reduced. With the 
unload-reload criterion the stress-strain path that must be followed during the unloading and the reloading is 
described. The skeleton curve and the unload-reload criterion constitute a simple mechanism for the 
construction of the cyclical stress-strain relations. Typical variations of the non-linearity in the stiffness modulus 
and the internal damping can be expressed directly as a function of the cyclical shear strain. When using the 
equivalent linear method (Seed and Idriss, 1970) settles down that the model of linear response is applicable for 
nonlinear behavior of the soil if the stiffness modulus is approximated as the module that is secant to the origin 
in the skeleton curve. Besides, the damping ratio is taken proportional to the area of the hysteresis cycle (a 
measurement of the capacity of energy dissipation of the material. Figure 1, left part, shows a typical 
stress-strain relationship of Masing type (Newmark and Rosenblueth, 1971). Right part shows that the stiffness 
modulus (referred as  ) and the damping ratio ( ) are function of the magnitude of the strain: the rigidity 
reduces and the damping increases as increases the strain. The values of the stiffness modulus and the damping 
ratio for the cyclical deformation c , can be considered with the formulas of Hardin and Drnevich (1972): 

 
1

c max c r1


                (2.1) 

 c max c max1               (2.2) 

where c  is the secant stiffness modulus for the cyclical deformation c , c  is the damping ratio for the 
cyclical deformation c , max  is the maximum stiffness modulus for small deformations, max  is the 
maximum damping ratio for great deformations, r  is the reference strain for small deformations equal a 

maxmax G/ , and max  is the maximum shearing stress or strength of the soil. According to equation 2.2, c  
must be interpreted like the damping that arises by nonlinear effects, since for infinitesimal deformations 

maxc   and therefore 0c  . When considering the viscous damping of the material, it is had that  

cvtotal             (2.3) 

where total  is the total damping and it is formed by the viscous ( v ) and hysteretic ( c ) dampings of the soil. The 

curves that are obtained with equations 2.1, 2.2 and 2.3 do not completely reflect the nonlinear behavior of the soil. 

However, it is accepted that the values derived for the stiffness modulus and the damping ratio represent the average 

values that would be had for the deformation imposed by a harmonic excitation. There are several empirical relations 

adjusted to consider the parameters r  and max  that are required for the application of equations 2.1 and 2.2. For 

sand and gravel the following equations in terms of the shear wave velocity were obtained (Seed and Idriss, 1970):  

sr log43.129.0log             (2.4) 

 max s0.2 0.1 200 800              (2.5) 

Whereas for saturated clays the following equations in terms of the plasticity index pI  were obtained: 
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pr 10)65.48I24.5(            (2.6) 

25.0max              (2.7)  

When the curves of dynamic shear modulus and critical damping for specific soils are known, these will be preferred 

instead of the empirical relations. The equivalent linear method consists of starting off with the elastic properties of 

the soil and examining the deformations that are had in a dynamic analysis under an excitation. Later it is made use of 

equations 2.1 and 2.2 or specific empirical relations are used and then, the values of shear wave velocity 
2/1

sss )/(   and damping s  compatible with the obtained level of deformation of the initial linear analysis 

are adopted. It is continued with these values of velocity and damping in a second linear analysis and the 

deformations are again examined in order to determine the dynamic parameters of the soil compatible with the level 

of deformations. Typically, after eight iterations one arrives at equivalent values of velocity and damping that reflect 

the nonlinear behavior of the soil subjected to the deformations imposed by the excitation. 

 

Figure 1. Left: Curved skeleton and load-reload criterion for material behavior of Masing type.  
Right: Stress-strain behavior for two levels of deformation  

3. EQUIVALENT LINEAR MODEL FOR A HOMOGENEOUS LAYER 

In agreement with the procedure described for the application of the equivalent linear method, it is required to know 

the level deformations inside a continuum medium. The relation between stress and strain in these media is given by 

the law of Hooke, and the relation between the strain and displacement is given by the Cauchy tensor. Following 

these relations and considering eq 1.1, it is had that the stress field s  in a layer is given by: 

   
1 i  t

s o s s s s s2V k sen k z H cos(k H) i sen(k H)  e
              (3.1) 

and the angular deformation or strain in the medium is given by 

   
-1 i  t

s o s s s sV k sen k z H cos(k H) i sen(k H)  e              (3.2) 

4. PARAMETRIC EXAMINATION OF THE NONLINEAR RESPONSE OF A LAYER 

In order to realize a parametric examination of the nonlinear behavior of a layer, particularly of the changes in the 

transfer function, it is convenient to normalize the layer response in terms of its dominant period. Equation 1 is the  

displacement field at any depth in the layer in terms of the argument, Hk s  that can be written as 4/)i1(T ss  . 

Then, it is had that in the surface of the layer ( Hz  ), the displacement is: 

1

i ts s
s o s s

T T
v 2V cos (1 i ) i sen (1 i ) e

4 4



      
          

    
     (4.1) 

On the other hand, realizing this same representation in equation 3.2, it leads to the following expression for the 

deformations inside the layer 

1

i  ts s s
s o s s s s

T T Tz
V k sen 1 (1 i ) cos (1 i ) i sen (1 i )  e

4 H 4 4



          
                  

        
 (4.2) 
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It is clear that, in agreement with equation 4.1, the displacement in the surface depend on the period of the layer, the 

damping and the impedances contrast. The strains in an arbitrary depth z depends on these parameters along with the 

wave propagation velocity s , implicit in the wave number sk . In a parametric study of the nonlinear behavior of a 

layer, it would be necessary to consider the dominant period as well as the wave propagation velocity, supposing that 

the strength or the reference strain, implicit in equations 2.1 and 2.2, are constant parameters in the analysis. It was 

found that there is a relation between the plasticity index and the velocity such that the effects of the non-linearity in 

the velocity and in the damping are constant, independent of the value of s . This is shown in figure 2. The uniform 

hazard spectrum for firm ground of Mexico City for a return period of 125 years was used as an excitation.  

 
Figure 2 Plasticity index pI  versus wave propagation velocity s  for constant relations of maxs /  

4.1. Response and Fourier Amplitude Spectra of uniform hazard for firm ground 
Nine Uniform Hazard Response Spectra (UHRS) (5% of damping) for firm ground of Mexico City were used, 

corresponding to return periods of 10, 20, 30, 50 75, 100, 125.175 and 250 years (Ordaz et al, 2003). The aim is to 

find tendencies in the changes that are had in the dominant period of a layer as well as in the damping, when varying 

the intensity of the excitation. These spectra as well as the response spectrum corresponding to a great subduction 

earthquake (M=8.1) registered in firm ground, are shown in figure 3, left part. Note that for structural periods 
s7.0Te  , this spectrum produces intensities with return periods between 75 and 125 years, approximately. For 

smaller structural periods the contribution of other seismic sources different from the subduction is clear. In the right 

part, the FAS of the selected UHRS as well as the FAS corresponding to the observed subduction earthquake are 

shown. For frequencies of the excitation Hz4.1f  , this spectrum produces intensities with return periods between 

75 and 125 years, approximately. For greater frequencies the contribution of other seismic sources is also clear. 

 

 
Figure 3. Left: Response spectra (RS) of uniform hazard (solid line) for return periods of 10 (minimum 
amplitudes), 20, 30, 50, 75, 100, 125, 175 and 250 (maximum amplitude) years. The RS corresponding to the 
September 19th, 1985, Michoacán earthquake, registered in firm ground, is shown with dashed heavy line. 
Right: FAS associated to the uniforms hazard (UHRS) (solid line) for the same return periods of the left part. 
With the dashed heavy line the FAS corresponding to the September 19th, 1985, Michoacán earthquake, 
registered in firm ground, is shown with dashed heavy line. 
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4.2. Preliminary calibrations 
Let suppose a homogenous mantle characterized by its dominant period, its internal damping and its impedance 

contrast with the halfspace. Equation 4.1 describes the motion that would be had in the surface under vertical 

incidence of shear waves as a function of these parameters. It is required to know the velocity s  in order to apply 

the equivalent linear method. For Mexico City, some empirical relations that allow knowing the velocity, the 

impedance contrast and the damping of the layer as functions of the dominant period have been calibrated (Avilés 

and Perez-Rocha 1998, Aguilar et al 2003). Using these expressions, it was found what plasticity index is required to 

have a reduction of 20% in s under the excitation corresponding to 125 years of return period. After incurring the 

iterations of the equivalent linear method would be had that s max/ 0.80   . The layer periods sT =1.0, 1,5, 2,0, 

2,5, 3 and 4 were selected for this parametric analysis. The peak ground acceleration and the effects of the 

non-linearity in the velocity ( maxs / ) and in the damping ( c ) due to the 9 excitations of figure 3, were 

determined and displayed in figure 4. It could be pointed out that it is possible to predict the changes in the shear 

wave velocity and the internal damping in a soil deposit based on the peak rock acceleration. Results of a regression 

considering all the values calculated for layer periods are shown with solid line and are written as follows 

 

r 0.85
max oβ β 1 0.296 a   and 

0.79r

oa129.0c       (4.3) 

 

 
 

Figure 4 Variation of the response in several soil deposits (characterized by their dominant period) with 
nonlinear behavior excited by a variety of motions of uniform hazard for different return periods, given in fig 3.  

 

5 SPECTRAL MODEL OF NONLINEAR BEHAVIOR 

Let suppose the transfer function given in eq 4.1 with s sT 4H /  , and 
1(1 i ) (1 i )     . Let 

o

s

o

s ζ ,β  and 
o

sη  

be the shear wave velocity, the damping ratio and the impedances contrast for strains within the elastic interval. 

Analogously, a transfer function for the nonlinear condition can be written by replacing the values 
nl

s

nl

s ζ ,β  and 
nl

sη . 

This substitution will consequently bring a shift towards smaller frequencies, due to the reduction in the velocity, and 

a reduction in the spectrum amplitudes due to two concepts: the increment in the value of the damping and the 

reduction of the impedances contrast (the rock remains elastic). In order to separate these effects, the shifting in the 

frequency and the amplitude reduction, it is proposed to use a transfer function that reflects only the spectral 

reductions, and later to consider explicitly the reduction in the velocity. That is, substitute 
o
sζ  and 

o

sη  by 
nl
sζ  and 

nl
sη  in the linear transfer function. The ratio between this two transfer function, linear and pseudo nonlinear, is 
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1

nl os s s s
s so nl o nl o o o o

s s s s s s s s

ωH ωH ωH ωH
G( ) cos i η sen cos iη sen

β (1 iζ ) β (1 iζ ) β (1 iζ ) β (1 iζ )


          

             
                

 (5.1) 

If the empirical transfer for elastic conditions is expressed by means of )(Eo

s  , with the reductions by non-linearity 

it would be expressed as 

      GEE
~ o

s

nl

s          (5.2) 

Finally, to include the shifting-to-low-frequencies a frequency scaling given by the factor 
o

s

nl

smax /βββ/ββ
~

  is 

done, that is to say 

)β
~

(ωE
~

) (ωE nl

s

nl

s            (5.3) 

If )(Eo

s   is the transfer function of a homogenous layer the solution is exact. The steps to modify a transfer 

function by nonlinear behavior are enlisted as follows: 

1) Identify the dominant period of the site sT  in the elastic empirical transfer function )(Eo

s  . 
2) Determine the values of the thickness of the deposit, the internal damping, and the impedance contrast. 

3) Determine the peak rock acceleration that it is had for the period of interest return. 

4) Determine the values of maxβ/β  and c  corresponding to the seismic intensity given by 
r

oa  with eq 4.3. 

5) Determine the values of the shear wave velocity 
nl
sβ , the damping ratio 

nl o
s s cζ ζ ζ  , and the impedances 

contrast 
nl
sη  for the condition of non-linearity imposed by 

r
oa . 

6) Determine the spectral function ratio of non-linearity with eq 5.1 

7) Obtain the nonlinear transfer function incorporating the reductions and shifting given by eqs 5.2 and 5.3, 

respectively. 

This procedure for two homogenous layers of 2 and 4 seconds period is shown in the top and the bottom of figure 5, 

respectively. The spectral functions of non-linearity considering 
2r

o m/s0.5a   are shown in left column. The 

elastic transfer functions and the elastic ones multiplied by the corresponding nonlinear spectral function, that is to 

say the reduced functions, are shown in the middle column. Finally, the elastic transfer functions and the final transfer 

functions after applying to the reductions and shifting by the non-linearity, appears in the right column. 

 

Figure 5. Account for the effects of non-linearity in a spectral analysis of two sites. Top: Ts=2s, Bottom: Ts=4s. 
Left: nonlinear spectral functions considering 

2r

o m/s0.5a  . Middle: elastic transfer functions (solid line) and 
elastic ones affected by the corresponding nonlinear spectral function (dashed lines). Right: elastic transfer 
functions (solid line) and final transfer functions (dashed line) after reduction and shifting by non-linearity. 



The 14
th  

World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  
 

 
5,2 Example  
In order to illustrate this method a real empirical transfer function of a site with sT 2s  was selected. Figure 6, left 

part, shows the transfer functions that would be had for the nine levels of non-linearity given by the nine excitations 

given by their FAS of figure 3. Note that these functions are losing their typical characteristic of narrow band as the 

effects of the non-linearity are increased. It has been observed in rigorous numerical experiments with stratigraphy of 

greater complexity (Perez-Rocha, 1990). Right part of figure 6 shows the UHRS (5% of structural damping) that 

would have for each excitation considering the nonlinear effects introduced in the transfer functions of left part. 

Spectra corresponding to 10 (minimum amplitude), 30, 100 and 250 (maximum amplitude) years are indicated with 

heavy lines. Note that as the return period grows the peak spectral value appears in greater structural periods. Finally, 

synthetic acelerogramas for each one of the return periods of 10, 30, 100 and 250 years indicated with heavy lines in  

figure 6 are shown in fig 7. The method used to obtain accelerograms is the one proposed by Boore (1983).  

 

 

 
Figure 6. Left: Elastic transfer function (heavy line) and the ones affected by non-linearity under the 9 FAS of 

figure 3. Right: UHRS (5% of damping) for return periods of 10 (minimum amplitude), 20, 30, 50, 75, 100, 125, 

175 and 250 (maximum amplitude) years. Spectra for 10, 30, 100 and 250 years are indicated heavy lines.  

 

 

 

Figure 7. In columns appear four simulations of synthetic accelerograms for the selected site in fig 6. Each row 

shows the synthetics of each one of the regarded return periods (10, 30, 100 y 250 years).  
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6. CONCLUSIONS 

A method to take into account the effects of the non-linearity in the dynamic response of layered soil deposits was 

presented. The method consists of taking into account the reductions and the shifting towards smaller frequencies 

than appear in the amplitude of the transfer functions when conditions of non-linearity. These reductions and shifting 

are made separately. Firstly the changes in the shear wave velocity and in the internal damping of the soil deposit are 

settled down based on the peak rock acceleration. Later a spectral function of non-linearity is computed. It is the ratio 

between the inelastic transfer function without considering the shifting towards smaller frequencies (increases in the 

wave number) and the elastic transfer function. The elastic transfer function is scaled with this function. The shifting 

is introduced explicitly by means of a frequency scaling of this transfer function. The method is exact for 

homogenous mantles. Response spectra and synthetic acelerogramas were computed with these functions. By 

simplicity empirical relations were used to modify the shear wave velocity and the damping ratio inside the layer. The 

results are satisfactory, although for realistic situations it will be necessary to establish empirical relations that reflect 

the behavior of the materials under different levels from non-linearity.  
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