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ABSTRACT : 

This paper introduces a finite element scheme and a systematic calibration approach for masonry infilled RC frames. The 
modeling scheme combines the smeared crack approach with discrete crack elements to allow for the opening of diffused 
flexural and dominant shear cracks. It is, therefore, able to capture the nonlinear material behavior and the interaction of
the infill wall with the bounding RC frame. The proposed modeling approach and calibration methodology are evaluated 
with experimental data of two non-ductile, infilled, RC frames with distinct failure mechanisms. The comparison of the
numerical and laboratory data indicates that the numerical models successfully capture the highly nonlinear behavior of 
the physical specimens. 
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1. INTRODUCTION 
 
Reinforced concrete (RC) frames with masonry infill walls can be frequently found in areas of high seismic risk around
the world. Although infills can develop strong interaction with the bounding frames under seismic loads, they are often 
considered as non-structural elements and are overlooked in the structural analysis and design. The issue as to how infills
affect the seismic performance of an RC building is intricate as the exact role of the masonry walls during an earthquake
is complex and not yet clearly understood. The variability of material properties, geometric configurations and
construction methods add to the complexity of this problem. 
Evaluating the seismic performance of infilled frames has been a challenging task for structural engineers. ASCE 41-06 
(2006) includes guidelines for simplified analytical methodologies, however, they are not satisfactory in terms of
completeness and reliability, and have not been fully validated. The most powerful analysis tool is the nonlinear finite 
element modeling. Lotfi (1992) and Attard et al. (2007) modeled masonry walls with a combination of continuum
elements and interface elements and Mehrabi and Shing (1994) simulated masonry infilled RC frames with a combination 
of discrete and smeared crack elements for the frame and the infill wall. Their models showed some success in capturing 
the nonlinear behavior of infilled frames but failed to capture some of the failure mechanisms observed in their tests due 
to issues related to the finite element discretization and model calibration. ASCE 41-06 recognizes the recent 
advancements in numerical simulations and permits the analysis of such structures with nonlinear finite element methods. 
Nevertheless, it does not provide further guidance to ensure the consistency of the analyses.  
This paper presents a reliable methodology for the development and calibration of nonlinear finite element models to 
assess the seismic performance of masonry infilled RC frames. The finite element scheme combines the advantages of
smeared and discrete crack modeling approaches to reproduce the different failure modes of infilled frames, including the
mixed-mode fracture of mortar joints and shear failure of RC columns. The numerical results for two frames tested by 
Mehrabi et al. (1994) presented in this paper demonstrate that the proposed methodology can capture the actual 
performance of the laboratory specimens, and predict well their strength and post-peak behavior.  
 
2. IN-PLANE BEHAVIOR OF INFILLED FRAMES 
 
The seismic performance of masonry infilled RC frames has intrigued the interest of many researchers worldwide and has
been the subject of a large number of experimental studies (Mehrabi et al. 1994 Fardis et al. 1999 and Al-Chaar et al. 
2003). These studies indicate that the in-plane lateral resistance of an infilled frame is not equal to a simple summation of 
the resistance of the masonry wall and the bare frame. For low levels of lateral load, an infilled frame acts as a monolithic
load-resisting system. As the load increases, the infill tends to partially separate from the frame and form a compression
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strut mechanism. However, the compression strut may or may not evolve into a governing load resisting mechanism
depending on the stiffness and strength of the infill with respect to those of the RC frame. Mehrabi et al. (1994) identified
a range of failure mechanisms indicating the importance of the interaction of the RC frame and the infill wall. Therefore, 
a consistent modeling scheme and calibration approach is needed to capture this interaction.   
 
3. FINITE ELEMENT MODELING SCHEME 
 
The failure infilled RC frames may involve diffused flexural cracks and dominant shear cracks in RC members, tensile 
and shear fracture in mortar joints, and compressive failure of concrete and masonry units. These failure modes can be 
accurately captured if smeared-crack elements are supplemented with zero- thickness interface elements to model cracks 
in a discrete fashion, so that the inherent problems of smeared crack elements such as stress-locking can be alleviated and 
the sliding shear failure of masonry mortar joints can be modeled. A general modeling approach, applicable to 
complicated structures without prior knowledge of the actual failure mechanism, is considered here.  

 
               (a)                                         (b) 
Figure 1: Finite element discretization (a) of RC members: mesh of concrete elements and flexural and shear 
reinforcement and (b) of masonry infill  
 
3.1 Discretization scheme for reinforced concrete members 
 
Reinforced concrete members are often discretized with a rectangular grid of nodes connected with quadrilateral 
smeared-crack elements. To model shear cracks in a discrete fashion without the prior knowledge of their locations and
orientations, each quadrilateral element can be replaced with a module of smeared-crack and interface elements. Each 
module consists of four triangular smeared-crack elements connected with four, diagonally placed, double-noded, 
zero-thickness interface elements, as illustrated in Figure 1(a). Each module is connected to the adjacent modules with
horizontal and vertical interface elements. With the proposed mesh topology, discrete cracks can develop at angles of 0o, 
90o and ± θ, where θ can be close to 45o to represent shear cracks. The introduction of discrete cracks not only removes 
the undesired stress locking under shear but also alleviates the mesh-size sensitivity problem, which is well known for 
smeared-crack models (Bazant and Oh 1983). To model the nonlinear behavior of the member in a refined manner, the
concrete members can be discretized with as many modules as needed in either direction to obtain an accurate solution. In 
general, it is desirable that the size of an element be close to the compressive failure zone in the concrete member. 
With the aforementioned discretization scheme, each interior node of the initial orthogonal mesh is replaced by eight
nodes, each associated with one triangular element and two interface elements. Consequently, the steel bars can be 
connected to the concrete elements in a number of ways. However, it is desirable to have as many nodes of a
smeared-crack element connected to steel bars as possible to enhance numerical stability, while every potential discrete 
crack crosses the same quantity of steel as in reality.  
A scheme has been proposed for the flexural and shear reinforcement in light of the above considerations. As illustrated
in Figure 1a, the flexural steel at each interior location is equally divided to eight truss elements so that every triangular
element is attached to flexural steel at two of its nodes. Along the external edges of the RC member there are four nodes
at each location, therefore the flexural steel is divided into four truss elements. This arrangement provides a degree of
restraint to the triangular elements when the tensile strength of the adjacent interface elements has been exhausted. For
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the shear reinforcement, the number of parallel bars can be reduced for computational efficiency. However, the total shear 
steel area at each location can be divided in two bars placed in a zigzag pattern, as shown in Figure 1(a). These bars help 
to prevent unrealistic horizontal sliding along the concrete interface elements. With this modelling scheme, every
potential horizontal and diagonal crack would cross the proper quantity of flexural and shear steel. 
 
3.2 Modeling scheme for masonry infill 
 
In a masonry assembly, the mortar is normally much weaker than the brick. The failure, however, may involve crushing 
and tensile fracturing of masonry units, fracturing of mortar joints, and tensile or shear fracturing in the interface between
mortar joints and masonry units. When the masonry assembly is under compression, the lateral expansion of the mortar 
introduces a lateral tensile stress on the brick, which at the same time provides a confining stress on the mortar. This often
leads to tensile splitting of the brick with cracks parallel to the compression force. Due to the brick-mortar interaction, the 
stiffness and compressive strength of the masonry assembly are lower than the brick but higher than the mortar.  
For the modeling of a masonry wall, one can make a significant simplification and represent an entire mortar joint with a
zero-thickness cohesive interface model (Lotfi and Shing 1994). In this case, the dimensions of the masonry units need to
be modified in the finite element model to maintain the same overall dimensions of a masonry assembly as shown in
Figure 1(b). Clearly, with this approach, the failure of a brick-mortar interface is not distinguished from that of the mortar
layer itself, while the brick-mortar interaction and the tensile splitting of the brick units under compression can not be
captured. With these considerations, it is evident that the properties of the continuum elements representing the brick
should reflect those of a masonry assembly rather than those of the brick itself. This is discussed further in the calibration
procedure in the following section. With the proposed discretization scheme, each masonry unit is modeled with two
rectangular continuum elements that are inter-connected with a vertical interface element. The latter allows for the tensile
splitting of the brick units and the relative sliding motion within a fractured unit.  
 
4. CONSTITUTIVE MODELS 
 
4.1 Smeared-crack model 
 
The smeared-crack model used to simulate the nonlinear behavior of concrete and masonry in this study was originally
developed by Lotfi and Shing (1991) and incorporated in the finite element analysis program FEAP (Taylor 2007). In this
model, the tensile fracture is governed by a tension cutoff criterion, while the compressive behavior of the uncracked
material is governed by the von-Mises failure criterion. When the stress state reaches the initial von Mises yield surface, 
the plastic behavior is represented by a J2-plasticity model. Between the initial yield surface and final failure surface, the
material exhibits a strain-hardening behavior, followed by a strain-softening behavior after the final failure surface is 
reached. The von Mises criterion is expressed as 

                              ( ) 0
3
1 2

2 =− peJ εσ                                          (1) 

in which J2 is the second invariant of the deviatoric stress, σe is the effective stress, and εp is the effective plastic strain.
For modeling the strain-hardening/softening behavior of concrete, the effective stress is expressed as a parabolic function
of the effective plastic strain followed by an exponential function. As shown in Figure 2(a), this relation is defined by the
following parameters: the compressive stress 0f  at first yielding, the compressive strength of the material '

cf , the strain 
at the peak stress p1ε , and the strain p2ε  at the transition point between the parabola and the exponential function. 
In tension, the material is initially linearly elastic and when the maximum principal stress reaches the tensile strength,
cracks initiate in a direction normal to the direction of the maximum principal stress. The cracked material is considered
as orthotropic with the axes of orthotropy, n-t, normal and tangential to the direction of the crack. In this study, the crack 
orientation and axes of orthotropy are assumed to remain constant. After cracking, the tensile stress decays exponentially 
as shown in Figure 2(b). Thus, the initial modulus of elasticity, E, tensile strength, tf ′ , and a shape factor, 1α , which 
controls the brittleness of the material, can define the tensile stress-strain relation.  
The compressive stress-strain behavior for the cracked material is depicted in Figure 2(c), and is similar to the effective
stress-strain relation of the plasticity model. It is parabolic with an exponential tail and is defined by the following three
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parameters: the compressive strength of the material '
cf , the strain at the peak stress ε1, and the strain ε2 at the transition 

point between the parabola and the exponential function. 
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  (a)                       (b)                  (c) 
Figure 2: Smeared crack constitutive model: (a) effective stress-vs- effective plastic strain relation for J2 plasticity 
model, (b) tensile behavior of orthotropic model, and (c) compressive behavior of orthotropic model. 

 
4.2 Dilatant interface model 
 
The interface model used in this study is implemented in FEAP as a 4-node, zero-thickness, isopararametric, line element. 
The model adopts a cohesive crack formulation that simulates mode-I, mode-II, and mixed-mode fracture (Lotfi and 
Shing 1994). It also accounts for the shear dilatation which can be important for simulating a confined crack. The model 
follows a classical elastic-plastic formulation. 
                                     )pσ = D(d - d                                       (2) 

in which { }Tσ τ=σ , with σ  and τ  being the normal and shear stresses at the interface, and { }T
n td d=d , with 

nd  and td  being the relative normal and shear displacements, the superposed dot represents the rate form, and D is a 
diagonal matrix with elastic constants Dn and Dt. 
The following hyperbolic yield surface is used to model fracture. 

                          ( ) ( )22( , ) 2 0F s r sτ μ σ σ= − − + − =σ q                        (3) 
in which μ is the slope of the asymptotes of the hyperbola, s is the tensile strength, and r is the radius of the yield surface
at the vertex of the hyperbola. The internal variables { }s r μ Τ=q control the evolution of the yield surface with 

{ }0 0 0 0s r μ Τ
=q  characterizing the initial surface, while { }0r r rr μ Τ

=q characterizes the final state. The 
following softening rules govern the evolution. 
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in which  and f fG GΙ ΙΙ  are the mode-I and mode-II fracture energies, α and β are material parameters controlling the rate 
of reduction of r and μ, and the κi’s represent the plastic work that governs the strength degradation. A non-associated 
flow rule with the following plastic potential is used. 
                              ( )( )srrqQ r −−+= σητσ 2),(                                (5) 
in which η is a scaling parameter controlling shear dilatation. The direction of plastic relative displacements is governed

by the flow rule, i.e.,
. .

p Qλ λ∂
= =

∂
d m

σ
, where λ is the plastic multiplier. With the above plastic potential, the rate of

shear dilatation decreases as the plastic work or the compressive stress increases. 
 
5. CALIBRATION OF MATERIAL MODELS 
 
5.1 Calibration of concrete model 
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In theory, one can obtain the tensile behavior of concrete with uniaxial tensile tests. However, these tests are generally
difficult to conduct and indirect laboratory methods, such as the modulus of rupture and split cylinder tests, are often
employed to extract the tensile strength.  In the absence of tensile test data, concrete is normally considered linearly
elastic before fracture, and its elastic modulus can be measured from compressive tests. Moreover, one can estimate the
tensile strength of concrete from its compressive strength using empirical formulas available in design codes and the
literature (MacGregor and Wight 2005). The post-peak tensile behavior can be determined with mode-I fracture tests, 
which are generally difficult to conduct. However, the mode-I fracture energy and, thereby, the post-peak behavior can be 
often estimated with test data and formulas available in the literature (e.g. Bazant and Becq-Giraudon 2002). Information
on the mode-II (shear) fracture energy is more difficult to obtain. However, one can assume that 10I II

f fG G= , which has 
been proven to provide satisfactory numerical results (Lotfi 1992). 
The proposed modeling scheme proposed uses zero-thickness interface elements to capture dominant shear cracks in a
concrete member in a more accurate manner. These elements are not supposed to influence the stiffness of the member
before fracture. Therefore, their elastic stiffness should be high but not too high to make the model numerically
ill-conditioned. Besides the tensile strength, the cohesive crack model used in this study allows one to specify the mode-I 
and mode-II fracture energies directly in terms of work per unit area. The fracture energies govern the evolution of the
failure surface related to the fracture (de-cohesion) process. The change of the shape of the failure surface signifying the
smoothening of a fractured interface under frictional work is governed by α and β, the material parameters controlling the 
rate of reduction of μ and r, respectively, as shown in equation 3. Information for the calibration of these parameters, as
well as the dilatation parameter, η, is not readily available. Such properties depend on the size of aggregates, the
composition of the mixture and other factors, and can be calibrated with mixed-mode fracture tests such as those 
conducted by Hassanzadeh (1990). 
For the calibration of the tensile behavior of the smeared crack concrete elements, the calibrated stress-displacement 
curve of the interface model can be used as a reference. To match the tensile behavior of the smeared-crack and interface 
elements, one should consider the stress-displacement relations for the two types of elements. To define the appropriate
stress-strain relation for a smeared crack element, one way is to determine the stress-displacement curve and relate strains 
to displacements by considering a characteristic length. For constant strain triangular elements, one can assume that the
characteristic length be equal to the square root of the element area (Papadrakakis et al. 2005).  
Furthermore, the smeared crack elements have to be calibrated to simulate the compressive behavior of concrete which is
commonly obtained from compression tests of concrete cylinders. One can first calibrate the compressive stress-strain 
relation of the orthotropic model, and then calibrate the plasticity model accordingly to assure a smooth transition from
the latter to the former at crack initiation. The compressive behavior of the elements should be calibrated with the
consideration of the element size to avoid the mesh-size sensitivity problem (Bazant and Oh. 1983).  
 
5.2 Calibration of masonry model  
 
While a variety of tests are available to characterize the masonry materials (ASTM 2004), the calibration approach needs
to consider the simplifying modeling assumptions. The zero-thickness interface elements used here to represent a mortar
joint, as well as the two interfaces between the mortar and the bricks which are the weakest links in a masonry assembly.
For the calibration of the shear behavior of the mortar joints, triplet tests or direct shear tests can be used. In-situ shove 
tests can be conducted to measure the shear strength and the corresponding normal load in a masonry wall. Results of
such tests are reported by Van der Pliujm (1992), and Mehrabi et al. (1994).  
Direct tensile tests on mortar joints are difficult to conduct and generally do not yield good results. However, the tensile 
strength of a brick-mortar interface can be obtained with beam tests or bond wrench tests. When shear test data is 
available, the mode-I fracture energy can be deduced from the mode-II fracture energy with the assumption 
that 10I II

f fG G= . The Young’s modulus of mortar can be determined with compression tests of mortar cylinders and the
stiffness of the interface elements can be approximated as Dn=E/h, in which h is the height of the mortar joints in the 
specimen. Even though this assumption does not reflect the actual stiffness of a mortar joint as it ignores the confinement
effect of the brick, the error can be compensated for by determining the brick element stiffness in such a way that the
overall prism stiffness is matched.  
The tensile and shear properties of the interface and smeared crack elements representing the brick can be calibrated in 
the same way as those simulating concrete. The tensile strength of the brick can be obtained with tensile splitting tests,
while mode-I fracture tests can be used for the calibration of the post-peak behavior. Since mode-I fracture tests cannot be 
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easily conducted, experimental data available in literature can be used to estimate the mode-I fracture energy (Van der 
Pliujm 1992). However, one should be cautious about the possible differences in the geometry and material content of
different bricks.  
The smeared crack brick elements have to be so calibrated so that, combined with the mortar interface elements, they
represent the compressive behavior of the masonry assembly. The interface element is elastic in compression and does not 
account for the Poisson effect of the mortar layer. To indirectly account for the 3-D brick-mortar interaction effect, the
compressive behavior of the smeared crack elements modeling the brick should be calibrated with compression tests of
masonry prisms rather than the compression tests of individual brick units. 
                                                      
6. EVALUATION OF THE MODELING SCHEME 
 
6.1 Experimental models 
 
The accuracy of the proposed modeling approach is evaluated 
with the consideration of two specimens tested by Mehrabi et 
al. (1994). They are Specimen 8, which was infilled with 
hollow concrete blocks (weak infill), and specimen 9, which 
had solid concrete bricks (strong infills). The frames were 
designed for moderate wind loads according to the provisions 
of ACI 318-89 and represented older structures that do not meet 
current seismic design requirements. Although the two 
specimens had the same detailing for the RC frames, as shown 
in Figure 3, their failure mechanisms were very distinct due to 
the different properties of the infill walls.   
 
 
 
6.2 Numerical models                                      Figure 3: Design of reinforced concrete frame. 
 
The infill and RC columns are modeled with the scheme shown in Figure 1. The base slab and the beam are modeled with 
4-node smeared-crack elements only for computational efficiency since no dominant shear cracks are expected to
develop. In the numerical model, the difference between the solid and hollow masonry units is reflected in the thickness
and compressive behavior of the infill. The thickness of the infill in Specimen 8 is specified to be the total thickness of 
the face shells, which is 3.175 cm. The same concrete properties are assumed for Specimens 8 and 9 since the same RC 
frame was used. Thus, the damage and subsequent repair have not been accounted for in the modeling of Specimen 9.  
The material models for concrete have been calibrated according to the proposed approach with data from compression
and split cylinder tests conducted by Mehrabi et al. (1994). The calibrated models are shown in Figure 4(a) and (b). In 
lack of relevant experimental data, the post-peak tensile behavior of concrete is specified with the fracture energy values
provided by Wittmann (2002). He obtained mode-I fracture energy ranges from 123 to 159 N/m for tensile strength 
values varying from 1.9 to 3.8 MPa. Split cylinder tests indicated a tensile strength of 2.76 MPa, hence, the mode-I 
fracture energy of the concrete is assumed to be 140 N/m. 
The data from shear tests of mortar joints have been used to calibrate the interface elements in the masonry panel. The
tests were conducted under constant compressive stresses of 345, 517, 689, and 1034 kPa, and yielded similar results for
the hollow and solid concrete units. Mode-II fracture energy was determined by adjusting the analytical shear stress-shear 
displacement curve to match the experimental, and mode-I fracture energy was assumed to be 10 times larger. The 
experimental and analytical shear stress-shear displacement relations for a normal stress of 1034 kPa are shown in Figure 
5(a). Figure 5(b) shows the peak and residual shear stress values observed in the tests and the yield and failure surfaces of 
the calibrated model. The initial tensile strength for the wall-to-beam and wall-to-column interfaces is assumed to be 1.38 
kPa because these joints are normally weaker than the bed joints. 
The compressive behavior of the masonry panel has been calibrated according to the proposed approach with prism test
data conducted by Mehrabi et al (1994) and the material models are presented in Figure 4(a). The tensile strength of 
masonry units is assumed to be 10% of its compressive. For the mode-I fracture energy of the masonry units, Van der 
Pluijm (1992) has found values ranging from 60 to 130 N/m for tensile strength varying from 1.5 to 3.5 MPa. Therefore,
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the mode-I fracture energy is assumed to be 105 N/m and the mode-II energy is calculated accordingly.  
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Figure 4: Calibration of smeared crack and interface models for concrete and brick: (a) compressive behavior and (b)
tensile behavior. 
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Figure 5: Calibration of interface model for mortar joints: (a) shear test and numerical results for σ = 1034 kPa (150 ksi) 
and (b) initial and final yield surfaces. 
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                  (a)                              (b)                           (c) 
Figure 6: (a) Lateral force-Lateral displacement curves for experimental and computational models (b)Deformed mesh 
for Specimen 8 at lateral drifts peak load and lateral drift of 0.82%, (c) deformed mesh for Specimen 9 at peak load and 
lateral drifts of 0.46%. 
 
6.3 Numerical results 
 
The load-displacement relations obtained from the finite element models are compared with the experimentally obtained 
responses in Figure 6(a). The strength and post-peak behavior of the numerical models match the experimental results
well. The numerical model for Specimen 8 captures well the experimentally measured initial stiffness but in the case of 
Specimen 9, it is overestimated. This is most likely caused by the fact that the model does not account for the pre-damage 
and repair of the RC frame.  
The deformed mesh of Specimen 8 at the peak load is presented in Figure 6(b). The crushing of a smeared-crack element 
is denoted by an ‘X’, and cracking by a line reflecting the crack orientation. The length of each line corresponds to the 
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extent of crushing or crack opening. The failure pattern of the numerical model, resembles that of the physical specimen 
as it involves severe slip along a large number of bed joints and cracking and crushing of the masonry units and flexural 
behavior of the concrete columns.  
The failure of Specimen 9 which included the strong infill initiated with the formation of a stair-stepped diagonal/sliding 
crack in the infill that was followed by a distinct diagonal shear crack at the top of the windward column. The
shear-dominated failure sequence is accurately reproduced with the finite element model in terms of the load-vs-drift 
relation and the failure pattern that is illustrated in Figure 6(c).  
 
7. SUMMARY AND CONCLUSIONS 
 
This paper addresses the challenging issue of assessing the performance of existing masonry infilled RC frames under
in-plane lateral loads. A finite element modeling methodology is developed, calibrated and validated with available 
experimental data. The proposed model combines the discrete and smeared crack approaches to circumvent the
inadequacy of the smeared crack elements to simulate the brittle shear behavior of RC members and the mixed-mode 
fracture of masonry mortar joints. With the consistent calibration of this modeling approach, the distinct failure
mechanisms of two frames infilled with strong and weak masonry, respectively, are successfully captured. 
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