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ABSTRACT : 

A new implementation scheme of the multi-transmitting formula(MTF) is provided as an absorbing boundary 
condition(ABC) for the numerical simulation of wave motion. The scheme not only improves accuracy of the 
boundary condition and reduces the computational effort, but also reveals clearly a relation between the order of
accuracy of the scheme and the exact numerical solution in which effects of the ABC have been completely 
removed. Finally the new scheme is compared with the Givoli-Neta ABC based on Higdon ABC. 

KEYWORDS: Numerical simulation, Wave motion, Absorbing boundary condition(ABC), Multi 
transmitting formula, Givoli-Neta ABC, Higdon ABC 

 
 
1. Introduction  
 
Problems of numerical simulation of waves in unbounded media are encountered in many fields of application,
such as earthquake engineering, geophysics, electromagnetics, oceanography, aerodynamics, etc. Numerical 
methods for such problems often involve truncating a finite computational domain and applying absorbing
boundary conditions(ABCs) on the truncation boundary. Many ABCs have been proposed since the 1970s, 
which can be classified into two broad classes: differential-equation-based and material-based; see 
surveys(Hagstrom 1999, 2003; Givoli 2004; Hagstrom and Lau 2007). Although many valuable results have 
been made in this field, there is still no consensus on the optimal ABC. Here we focus on MTF which was
proposed in 1984 and commonly referred to as Liao’s ABC by researchers in different fields (Liao et al. 1984; 
Liao 2002). This is because of its applicability to various fields and its easy implementation. In this paper we 
give a new implementation scheme of MTF, which not only improves accuracy of the boundary condition and 
reduces the computational effort, but also reveals clearly a relation between the order of accuracy of the scheme 
and the exact numerical solution in which effects of the ABC have been completely removed. The relation 
shows that improving accuracy of ABCs is still an important topic for the numerical simulation. Following is 
the outline of the rest of this paper. In Section 2 we give a brief description of MTF. In Section 3 we illustrate
the new implementation scheme of MTF and discuss its implication. We demonstrate the performance of the 
new scheme via some numerical examples in Section 4 and compare it with the G-N ABC based on Higdon’s 
ABC(Givoli and Neta 2003). We close with concluding remarks in Section 5. 
 
 
2. Brief description of MTF 
 
Without loss of generality, we consider a two-dimensional wave problem in unbounded media. A Cartesian 
coordinate system (x, y) is introduced such that the artificial boundary is parallel to the y-direction. The setup 
is shown in Fig. 1. It is assumed that the wave field u(t, x, y) in the neighboring area of a boundary point (0, 
yk) consists of the one-way waves propagating from the interior of the computational domain into the 
exterior: 
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It is known in (2.1) that fl(cxlt - x, y) is a one-way wave satisfying the interior wave equation, and that the 
apparent speed cxl is a real positive number which may be frequency-dependent. However, the exact form of
fl(cxlt - x, y) and the value of cxl are unknown. An ABC, namely, the MTF has been derived based on a 
straightforward simulation of (2.1) via introducing a common artificial transmitting speed for all one-way 
waves in (2.1) and the concept of the error waves (Liao et al. 1984). The MTF for the boundary point (0, yk) can 
be written as 
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where ac is the artificial transmitting speed, ky k y= Δ , tΔ and yΔ are, respectively, the time-step size and grid
spacing in the y-direction, N is the approximation order of MTF. It should be noticed that in derivation of (2.2), 
only Eq. (2.1) is used, thus MTF is not limited by a particular form of the interior wave equation. 
 

 
Figure 1 A neighboring area of a boundary point (0, yk) 

 

 

3. the new implementation of MTF 
 
The original implementation is imposed (2.2) on the artificial boundary directly. The new scheme is a 
combination of Eq.(2.2) and the discrete formula of an interior field equation for the nodal points adjacent to 
the artificial boundary. As an example, we suppose the interior field equation is the two-dimensional SH wave 
equation  

 
( )2 2 2 2 0t x yc u⎡ ⎤∂ − ∂ + ∂ =⎣ ⎦                                    (3.1)

where /a a∂ = ∂ ∂ , c is a given wave speed. Consider the explicit central difference scheme of (3.1) 
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where /c t xτΔ = Δ Δ , ( ), , ,n
i ku u n t i y k y= Δ Δ Δ . At the artificial boundary point (0, yk), Eq. (3.2) can be 

rewritten as 
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MTF is used to update 1,
n

ku  i.e.: 
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Where the binomial coefficient
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. It should be noticed that in Eq.(3.4) the artificial speed

/ac y t= Δ Δ  is assumed for simplification . Substitute (3.4) into (3.3) leads to the new implementation scheme 
of MTF:  
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There are three reasons for us to provide such a scheme instead of the original one. The first reason is that the 
nodal points of the artificial boundary for the original implementation have been replaced by the interior nodal 
points adjacent to the boundary, thus the computational cost is reduced. This is not meaningless for
three-dimensional problems of large scale. Second reason is it can improve accuracy of MTF, which will be
shown in the following numerical tests, and further discussed in other reports. Third reason is that the new
scheme reveals a relation between the order of accuracy of the scheme and the exact numerical solution in 
which effects of the ABC have been completely removed. We can see that as N increases, Eq.(3.5) approaches
to the discrete form of interior wave equation. However, effects of the ABC can be completely removed as and 
only as N approaches infinity. Thus improving accuracy of ABCs is still a meaningful topic for the numerical 
simulation. 
 
 
4. Numerical test 
 
Here we present two numerical tests. In the first we compare the new scheme with the original, i.e., impose 
Eq.(3.4) directly upon the boundary. In the second the new scheme is compared with G-N ABC, which is the 
first alternative of a series high order ABCs recently developed based on the auxiliary variables. A semi 
–infinite two-dimensional wave-guide as a benchmark problem used by Givoli and Neta (2003) is illustrated in 
Fig. 2 

 

 
Figure 2 a semi-infinite wave-guide problem 

 
The width of wave-guide is denoted by b. In the wave-guide we consider the linear homogeneous SH-wave 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

equation i.e. Eq.(3.1). We set b=5m and c=1m/s. On the north and south boundaries SΓ and NΓ we specify the 
Dirichlet condition.  
 

0u =   on SΓ and NΓ                                    (4.1)

On the west boundary WΓ  we prescribe u  using a Dirichlet condition, i.e., 
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We set 1sy m= , 1sr m= and 0.5st s= . The artificial boundary EΓ is introduced at xE=5m. Thus, the 
computational domainΩ is a 5m×5m square. InΩ a uniform grid with 21×21 points is used. We discretize the 
SH wave equation using Eq.(3.2). In application of numerical simulation, engineer often like to set τΔ as close
as, but a little smaller than the CFL stability limit. Here the CFL stability limit is1/ 2 , Thus we let τΔ  vary
from 0.4 to 0.6, Thus the time-step size tΔ varies from 0.01s to 0.15s. On EΓ we impose the new scheme of 
MTF, Eq.(3.4) and G-N ABC with different orders J. Initially we set CN =c= 1m/s for all the N’s in G-N 
ABC(In Givoli and Neta’s paper, detail implementation information of G-N ABC is presented). 
 
A reference solution which is regarded as the “exact solution” uex is obtained by solving the problem in 
extended domain 0 ≤ x ≤ 25m, 0 ≤ y ≤ 5m, using a 101×21 grid with the same resolution. During the simulation 
time t=40s the wave generated on WΓ does not reach the remote (east) boundary of this large domain, and thus 
the issue of spurious reflection is avoided altogether, regardless of the boundary condition used on the remote 
boundary. Hence this will serve as a “reference solution” which is exact as far as the boundary condition 
treatment is concerned. Error measures of the numerical solutions are defined as the Eulerian norm of the point 
wise error at a nodal point ( )0,Ex y , i.e. 
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The error will be shown at the point ( )0,Ex y = (5, 2.75) which is located on the artificial boundary, slightly 
above the center of the waveguide. Fig.3 shows the errors generated by the new scheme Eq.(3.5) with N=2, 3, 
4, compared with the errors generated by the old scheme Eq.(3.4). In Fig.4 the errors generated by the new
scheme with N=2, 3, 4 is plotted, compared with errors generated by the G-N ABC.  
 
 
5. Concluding remarks 
 
We have illustrated a new implementation scheme of MTF and its advantages over the old one via a simple 
two-dimensional benchmark example. The new scheme is applicable to various cases just like the old one as
long as the outgoing waves can be described by Eq.(2.1). The measures for stable implementation of the old 
(Liao, 2002) can be applied to the new scheme as well. As shown in this paper improving accuracy of MTF is
still a meaningful topic. In addition, deeper studies on numerical stability of the new scheme are needed.  
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Figure 3 Errors calculated by the measure E defined by (4.4) at point (5, 2.75), 

        the new scheme and the old scheme Eq.(3.4) of order N is used on EΓ : N=2, N=3, N=4. 
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Figure 4 Errors calculated by the measure E defined by (4.4) at point (5, 2.75), 
the new scheme and G-N ABC of order N is used on EΓ : N=2, N=3, N=4. 
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