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ABSTRACT: Continuous-time rational approximation (CRA) of foundation frequency response is the first step 
of a systematic procedure for constructing various high-order lumped-parameter models (LPMs) in foundation 
vibration analysis. The stability and accuracy of CRA determine those of its LPMs as realizations. In this paper, 
the stability and identification of CRA are studied. The necessary and sufficient stability conditions are 
presented based on the linear-system stability theory and the input-output case of LPMs. A parameter 
identification method is further proposed by directly solving a nonlinear least-squares fitting problem using the 
hybrid genetic-simplex optimization algorithm, where the proposed stability conditions are considered by the 
penalty function method. A stable and accurate CRA is obtained by this method and is then realized as Wu-Lee’s 
and Wolf’s LPMs. The proposed stability theory and identification method is verified by analyzing several 
typical foundation vibration problems and comparing with Wu-Lee’ and Wolf’s results.  
KEYWORDS: foundation vibration, lumped-parameter model, continuous-time rational approximation, 
stability, identification 
 
 
1. INTRODUCTION 
 
The soil-structure-interaction analysis considering the dynamic behavior of foundation on infinite soil requires 
extending the study object from only the structure to a structure-foundation-soil system [1]. The time-domain 
method is preferred to numerically solve such system because any possible nonlinearity in superstructure can be 
easily considered. At present, the time-domain representations for foundation-soil system include two types of 
methods: lumped-parameter models (LPMs) and time-domain recursive evaluations (TDREs).  
 
A systematic procedure of constructing various LPMs was proposed by Wolf [2]. The procedure can be 
summarized as two successive steps: the foundation frequency response (dynamic stiffness or flexibility) is first 
approximated by a rational function in complex frequency with real parameters, and the rational function is then 
realized as various types of LPMs with real but not necessarily positive parameters. Here, the rational function 
is called as continuous-time rational approximation (CRA), and the resulting LPMs are called as high-order due 
to the asymptotic exactness of CRA with its order increasing. Several types of high-order LPMs [1-6] have been 
proposed. This systematic procedure is not only for LPMs but also for TDREs, where a rational function in z 
variable of z-transform, that is called as discrete-time rational approximation (DRA), is used instead of a CRA. 
Several types of TDREs [1, 7-10] have been also proposed. The systematic procedure can be interpreted by linear 
system theory [11]. The first step of the procedure is that the foundation-soil system is approximated as a 
differential linear time-invariant continuous-time (LTIC) (or difference linear time-invariant discrete-time 
(LTID)) system with a CRA (or DRA) as frequency response. The second step of the procedure is that the 
resulting linear system is realized as various types of LPMs (or TDREs) in many different ways. Although these 
LPMs (or TDREs) from the same CRA (or DRA) may be different in many aspects, their accuracy and stability 
are identical and determined by the CRA (or DRA). 
 
So far all works concentrate mainly on the second step of the systematic procedure to construct various types of 
LPMs (or TDREs). However, the stability and identification of CRA (or DRA) as a key start point are not 
studied specially. This is one of the reasons that the development and application of LPMs (or TDREs) based on 
the systematic procedure are limited. At the aspect of stability, no systematic stability theory has been seen by 



authors so far. At the aspect of parameter identification, the linearized method is used widely [1-5, 7]. Recently, the 
iteratively linearized method is used by Şafak [8]. The linearized method is an approximate to the original 
nonlinear parameter identification problem. Moreover, the instable LPMs (or TDREs) may be obtained due to 
without any stability constraint considered in the identification procedure, such as several LPMs in [4] and 
TDREs in [8] (which may accurately fit foundation frequency response in frequency domain but cause the 
time-domain results instable rapidly and severely). Recently, Du et al. [9] and Zhao and Du [10] apply the 
genetic-simplex algorithm to the original nonlinear identification problem for DRA, where the stability 
condition can be considered as penalty function. 
 
This paper and an accompanying paper [12] concentrate on the first step of the above systematic procedure. The 
stability and identification of CRA realized as LPMs are studied in this paper, and those of DRA realized as 
TDREs do in the accompanying paper [12].  
 
 
2. CONTINUOUS-TIME RATIONAL APPROXIMATION 
 
From a viewpoint of system, the foundation-soil system form two interinvertible LTIC systems with single input, 
single output and zero-initial condition, although it is only a physically real system intuitively (see Figure 1). 
The foundation-soil system can not be conveniently solved in time domain, mainly because it is not a 
differential system although is a LTIC system. To achieve this, the known exact foundation frequency response 
(dynamic stiffness or flexibility) is approximated as a rational function in complex frequency in continuous-time 
case. This rational function is called as CRA here. The dynamic-stiffness-form CRA (SCRA) can be written as  
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where the order of the numerator polynomial N+1 is one more than that of the denominator N, S0 is static 
stiffness, s  is the dimensionless complex frequency, ωis =  here, 1−=i , Scd /ωω =  is the 
dimensionless frequency with the characteristic length d (of foundation) and the (shear) wave velocity cS (of 
soil), and  are the undetermined real parameters which will be identified in next section. If the 
high-frequency limit  of dimensionless damping coefficient of dynamic stiffness is known, 

jj qp ,

∞c NN qcp ∞+ =1  
so that SCRA is exact (doubly asymptotic) at high- and low-frequency limits. Correspondingly, the 
dynamic-flexibility-form CRA (FCRA), reciprocal of SCRA, is 
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where )1( 00 SF =  is static flexibility. Once CRA is obtained, it can be realized as various types of LPMs. 
Correspondingly, LPM also forms to two interinvertible systems in mathematics (see Figure 1).  
 

 
Figure 1 Foundation-soil system and its LPMs 



3. STABILITY AND IDENTIFICATION 
 
 
3.1. Stability 
 
The stability of LPM is that of its dynamic-stiffness or -flexibility system, i.e. the stability of SCRA or FCRA. 
In soil-structure-interaction analysis, due to LPM with force as input and displacement as output, the stability of 
FCRA can guarantee the structure-foundation-soil system dynamically stable. Assume that the poles of SCRA 
are  for , and the poles of FCRA are  for S

js Nj ,...,1= F
js 1,...,1 += Nj , where the poles are zeros of their 

denominator polynomial. According to the linear-system stability theory [11], the stability conditions of a LPM 
can be stated as follows: 
(1) When applied to compute force from displacement, a LPM is dynamically stable if and only if the real parts 
of all poles of its SCRA are negative, i.e. ( ) 0Re <S

js  for Nj ,...,1= . 
(2) When applied to compute displacement from force, a LPM is dynamically stable if and only if the real parts 
of all poles of its FCRA are negative, i.e. ( ) 0Re <F

js  for 1,...,1 += Nj . 
 
Moreover, according to Routh-Hurwitz theorem, a simple instability criterion can be stated as follows: 
(1) When applied to compute force from displacement, a LPM is instable if one or more parameters of 
denominator polynomial of its SCRA are negative. 
(2) When applied to compute displacement from force, a LPM is instable if one or more parameters of 
denominator polynomial of its FCRA are negative. 
 
 
3.2. Parameter Identification 
 
The parameters in CRA can be obtained by fitting the exact foundation frequency response. The dynamic 
stiffness and SCRA are used here. To achieve a stable result, the parameter identification requires solving the 
following nonlinear least-squares fitting problem 
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where L denotes the number of data points chosen of interest, l denotes the l-th data point, ωω Δ= ll , the 

constraint condition is combined into the object function by penalty function method,  and  are the 

penalty factors for different poles,  here, and the real number  is zero in theory but can 
be negative to enlarge the penalty range so as to avoid a marginally stable time-domain result including noise. 
Note that no frequency-dependent weight is required here.  
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The hybrid genetic-simplex optimization algorithm combining the genetic algorithm [13] and the Nelder-Mead 
simplex method [14] is used to solve Eqn. 3.1 or 3.2. The flow chart of the hybrid algorithm that is implemented 
into MATLAB sees Figure 2. The following three reasons make such hybrid algorithm become a proper choice 
for Eqn. 3.1 or 3.2. First, this algorithm is a direct search method without the derivative of object function 
required. Second, this algorithm can optimize a high-dimension problem (the dimension of problem is the 
number of parameters to optimize). Third, no “exact” initial values are required since the genetic algorithm is a 
global optimization method with random initial values.  
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Figure 2 The flow chart of hybrid genetic-simplex algorithm     Figure 3 Dimensionless input impulse 

 
Table 1 CRAs and corresponding Wu-Lee LPMs for rocking surface circular foundation (N=2) 

This paper  Wu-Lee 
(Ⅰ) (Ⅱ, Ⅲ, Ⅳ) 

1p  0.27772901 0.28231964 0.2756 

2p  0.05739021 0.04228887 0.0643 

1q  0.0455 0.02621116 0.01297632 

2q  -0.0161 -0.01494088 0.00000002 

S
js  9.4198 

-6.5937 
9.105156 
-7.350831 

-77.072673 
-645449.840300 

F
js  17.5550 

-1.9975 ± 2.8325 i 
17.415225 

-2.186668 ± 2.875304 i
-7142782.976057 

-3.337991 ± 3.536201 i

1k  -10.28 -9.78205698 2312731.29935156 

1c  0.5849 0.56169571 0.32378576 

2k  0.9114 0.90725332 1.00000043 

2c  0.5932 0.61920192 3.25898995 

f

u
1k 1c

1u

2u
2k 2c 3k

3c

-3.181 -3.71381940 -230.39708171 3k  

3c  -0.4067 -0.41700709 -2.98964640 
E 0.411270 0.396646 0.693334 
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(a) Wu-Lee                (b) This paper (I)         (c) This paper (II, III, IV) 
Figure 4 Time-domain results for rocking surface circular foundation (N=2) 



 
Table 2 CRAs and corresponding Wu-Lee LPMs for rocking surface circular foundation (N=3) 

This paper 
 Wu-Lee 1−=e ) (Ⅱ, Ⅳ and (Ⅰ, Ⅲ) 

1p  0.81039514 0.92971660 0.7019 

2p  0.29339136 0.33169604 0.2522 

3p  0.01763940 0.02905036 0.0125 

1q  0.6910 0.83315133 1.00498595 

2q  -0.0151 -0.01426118 0.00753891 

3q  0.0029 0.00250200 0.00251293 

S
js  -1.3934 

3.3001 ± 15.3810 i 
-1.171920 

3.435913 ± 18.145015 i 
-1.000040 

-1.000002 ± 19.922989 i
F
js  -5.8149 ± 14.897 i 

-1.5025 ± 1.5233 i 
-10.431980 ± 14.868793 i
-1.536664 ± 1.323649 i 

-17.901108 ± 0.171576 i
-1.724339 ± 1.114734 i

1k  -6.112 -3.05032144 -1.71156278 

1c  -55.05 -1.42318539 -0.46759778 

2k  127250 192.42011405 25.91089713 

2c  54.77 1.25009426 0.29593962 

f

u

2u

1u

3u

1c1k

3k 3c

2k

2c

4k

4c

0.75310602 0.63120898 0.8594 3k  

3c  0.24402418 0.18070453 0.2930 
-0.4243 -0.32838326 -0.22612104 4k  

4c  -0.2794 -0.24637972 -0.18734702 
E 0.024246 0.018743 0.075270 
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(a) Wu-Lee              (b) This paper (I, III)      (c) This paper (II, IV and e=-1) 
Figure 5 Time-domain results for rocking surface circular foundation (N=3) 

 
 
4. NUMERICAL TESTS 
 
The proposed stability theory and parameter identification method are verified via two examples used by Wu 
and Lee [4] and Wolf [1]. The comparison is performed with their results. The parameters from [4, 1] are boldface. 
The four constraint cases in our identification method are: (I) without any constraint; (II) constraint of 



( ) 0Re <S
js ( ) 0Re <F

js; (III) constraint of ; (IV) simultaneous constraints. The object function without penalty 
in Eqn. 3.1 or 3.2 is defined as a global dynamic-stiffness error E. The dimensionless physical models with input 
impulse shown in Figure 3, and the implicit Newmark time-integration method [15] are used in time-domain 
analysis. For LPMs, the dimensionless spring parameter ( )dSccc Sjj 0=, dashpot parameter 0Skk jj =  and 

mass parameter ( )2
0

2 dScmm Sjj =  are introduced, respectively. 
 
4.1. Verifying Stability Theory 
 
A rocking circular foundation on half-space elastic soil is analyzed. The radius of circular foundation 
(characteristic length) is d. The mass density, shear modules and Possion ratio of soil are ρ , G, and v (=0.5 
here), respectively. The shear wave velocity of soil is [ ])1(38 3

0 vGdS −=ρGcS = . The static stiffness is . 
The high-frequency limit of dimensionless damping coefficient is 16)1(3 vc −=∞ π . The exact dynamic 
stiffness sees [16].  
 
For the case of N=2, the paramters of CRAs and corresponding LPMs and the global dynamic-stiffness errors 
are listed in Table 1. The the time-domain results are shown in Figure 4. Wu-Lee parameters are instable for 
either dynamic-stiffness or dynamic-flexibility system. The stability of parameters of this paper (I) is same as 
that of Wu-Lee parameters due to without any stability constraint, but the global dynamic-stiffness error is less 
which indicats that the proposed method is more effective than the linearized identification method. The 
parameters of this paper (II, III, IV) are stable for both dynamic-stiffness and -flexibility systems but at the price 
of the light loss of accuracy. 
 
For the case of N=3, the results see Table 2 and Figure 5. This time, Wu-Lee parameters are stable for 
dynamic-flexibility system but instable for dynamic-stiffness system. The stability of parameters of this paper (I, 
III) is same as that of Wu-Lee parameters, but the global dynamic-stiffness error is less. The parameters of this 
paper (II, IV) are stable for both dynamic-stiffness and -flexibility systems but at the price of the loss of 
accuracy, where  used to avoid the marginal stability. 1−=e
 

Table 3 CRAs and corresponding Wu-Lee and Wolf LPMs for semi-infinite rod (N=3) 
 Wu-Lee This paper Wolf * 
1p  1.66 1.73561311 1.84874893 

2p  2.71 2.57111362 2.39728651 

3p  1.74 1.80599507 1.81344415 

1q  1.86 1.82740854 1.84775798 

2q  1.76 1.81872359 1.81344415 

3q  1.60 1.38630902 1.05678564 

f

u

2u

1u

3u

1c1k

3k 3c

2k

2c

4k

4c

-0.930 -0.7066 -0.795079 S
js  

-0.393 ± 0.929 i -0.1967 ± 0.9197 i -0.258419 ± 0.916774 i 
-0.0380 ± 0.9880 i -0.058047 ± 0.989903 i -0.106062 ± 1.011391 iF

js  
-0.5058 ± 0.6193 i -0.593321 ± 0.617719 i -0.751938 ± 0.591515 i

Wu-Lee 3.18811174 4.45 -0.605785 -0.716862161k 1k 
f

u

1u 2u

1k 2k

3k1c

2c

2c
4k 3c

m

1c  2.78858518 0.041083264.44 0.0559794 2k
-8.47 -0.0639044 -5.26271484 -0.046848832k 3k 

2c  0.66617291-8.65 0.548601 -6.11903670 4k

1c1.45701505 1.29 -0.651197 -0.901623263k  

3c 2c 1.55910113 -0.00306417 1.29 -0.00164224

3c 1.00164224-0.54 1.003064 -0.83082499 4k  

4c  m-1.27 -0.00779299 -1.05836569 -0.00635496
* In [1], the constant term in numerator polynomail of Eqn. 2.1 is 1.00032084 and 7003064.02 lc = − . 
 



For the cases of N=2 and 3, all conclusions obtained from the proposed stability theory accord with the results 
of numerical tests, which indicates the correctness of the theory. Moreover, for same problem, the stability may 
change for different N, and the accuracy is improved considerably with N increasing. 
 
 
4.2. Verifying Accuracy of Identification 
 
A semi-infinite rod on elastic foundation is analyzed. The elastic modulus, cross-sectional area, and mass 
density of rod are E, A, and ρ , respectively. The spring stiffness per unit length of foundation is . The 

characteristic length is 
gk

gkEAd = gEAkS =0ρEcS =. The wave velocity is . The static stiffness is . 

The high-frequency limit of dimensionless damping coefficient is 1=∞c . The concrete description about this 
problem sees [1, 4, 6].  
 
The CRAs and corresponding LPMs are listed in Table 3 and 4 respectively for N=3 and 4. All parameters by 
various identification methods are stable, which indicates that CRAs of semi-infinite rod problem may be stable 
in nature. Therefore, this problem is proper to verify the accuracy of identification. The global dynamic-stiffness 
errors are listed in Table 5. It is clear that the accuracy is improved with N increasing, and for same N the 
parameters in this paper are more accurate.  
 
Table 4 CRAs and corresponding Wu-Lee LPMs for semi-infinite rod (N=4) 

 
Table 5 Global dynamic-stiffness errors for semi-infinite rod (10-4) 

N=3  N=4 
Wolf Wu-Lee This paper  Wu-Lee This paper 

9.956701 7.297607 5.894309  3.647233 2.964235 
01.0,100 =Δ≤≤ ωω .                                         Figure 6 Time-domain soil-structure- 

interaction results for semi-infinite rod 
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1p  2.05591649 2.27  This paper (Wu-Lee LPM)

2p  3.50 3.19687897  This paper (Wolf LPM)

3p  3.50217395 4.22 

4p  2.16775170 2.50 

1u

3u

2u

4u

2c2k

4k 4c

3k

3c

5k

5c

f

u
1k 1c

1q  2.01459812 2.17 

2q  2.83729241 3.30 

3q  2.16158416 2.49 

4q  1.38134744 1.88 
S
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-0.129403 ± 0.975620 i Dimensionless time
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N=3

 

 

 Extended solution
 This paper (Wu-Lee LPM)
 Wu-Lee
 Wolf

0.4

-0.653016 ± 0.566557 i
-0.6840 

-0.0234 ± 0.9935 i 
-0.2995 ± 0.8352 i 

-0.820320 
-0.028225 ± 0.996635 i
-0.346266 ± 0.876273 i

F
js  

2.31 2.64582619 1k  

1c  3.38 3.22535900 

2k  5.22 4.62580931 

2c  4.09 4.17164291 

3k  -8.21 -8.13011005 

3c  -10.6 -9.06894195 
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 Extended solution
4k  2.67 2.46385625  This paper (Wu-Lee LPM)
4c  2.17 2.22102147 

5k  -2.76 -2.70311907 

5c  -4.30 -3.37780335 

N=4

 Wu-Lee
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The time- soil-struct ion analysis is perform
trun a i and the residue finite part does by finite element method. To test 
stringe in imensionless element size 

domain ure-interact ed by truncating the semi-infinite rod. The 
c ted infinite part s modeled by LPM 

01.0=Δx  ntly, only two f ite elements with d are used in finite part. The 
extended sol  is used as the reference one, which is obtained via taking the finite part large enough to 
prevent any ction from dary to rod end before dimensionless time 50. The displacement 
res ts on ro  are shown . It is clear from the first figure of N=3 that for a same CRA obtained in 
thi aper th ult of Wu-Lee LPM is identical with that of Wolf LPM, which indicates that the accuracy and 
stability of ine resulting LPMs. In the second figure of N=3, all three results fit the 
extended solution with large ccuracy is improved considerably as increasing N to 4. 
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