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ABSTRACT: Continuous-time rational approximation (CRA) of foundation frequency response is the first step
of a systematic procedure for constructing various high-order lumped-parameter models (LPMs) in foundation
vibration analysis. The stability and accuracy of CRA determine those of its LPMs as realizations. In this paper,
the stability and identification of CRA are studied. The necessary and sufficient stability conditions are
presented based on the linear-system stability theory and the input-output case of LPMs. A parameter
identification method is further proposed by directly solving a nonlinear least-squares fitting problem using the
hybrid genetic-simplex optimization algorithm, where the proposed stability conditions are considered by the
penalty function method. A stable and accurate CRA is obtained by this method and is then realized as Wu-Lee’s
and Wolf’s LPMs. The proposed stability theory and identification method is verified by analyzing several
typical foundation vibration problems and comparing with Wu-Lee’ and Wolf’s results.
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1. INTRODUCTION

The soil-structure-interaction analysis considering the dynamic behavior of foundation on infinite soil requires
extending the study object from only the structure to a structure-foundation-soil system . The time-domain
method is preferred to numerically solve such system because any possible nonlinearity in superstructure can be
easily considered. At present, the time-domain representations for foundation-soil system include two types of
methods: lumped-parameter models (LPMs) and time-domain recursive evaluations (TDREs).

A systematic procedure of constructing various LPMs was proposed by Wolf . The procedure can be
summarized as two successive steps: the foundation frequency response (dynamic stiffness or flexibility) is first
approximated by a rational function in complex frequency with real parameters, and the rational function is then
realized as various types of LPMs with real but not necessarily positive parameters. Here, the rational function
is called as continuous-time rational approximation (CRA), and the resulting LPMs are called as high-order due
to the asymptotic exactness of CRA with its order increasing. Several types of high-order LPMs " have been
proposed. This systematic procedure is not only for LPMs but also for TDREs, where a rational function in z
variable of z-transform, that is called as discrete-time rational approximation (DRA), is used instead of a CRA.
Several types of TDREs """ have been also proposed. The systematic procedure can be interpreted by linear
system theory ', The first step of the procedure is that the foundation-soil system is approximated as a
differential linear time-invariant continuous-time (LTIC) (or difference linear time-invariant discrete-time
(LTID)) system with a CRA (or DRA) as frequency response. The second step of the procedure is that the
resulting linear system is realized as various types of LPMs (or TDREs) in many different ways. Although these
LPMs (or TDREs) from the same CRA (or DRA) may be different in many aspects, their accuracy and stability
are identical and determined by the CRA (or DRA).

So far all works concentrate mainly on the second step of the systematic procedure to construct various types of
LPMs (or TDREs). However, the stability and identification of CRA (or DRA) as a key start point are not
studied specially. This is one of the reasons that the development and application of LPMs (or TDREs) based on
the systematic procedure are limited. At the aspect of stability, no systematic stability theory has been seen by



authors so far. At the aspect of parameter identification, the linearized method is used widely !> "). Recently, the
iteratively linearized method is used by Safak '!. The linearized method is an approximate to the original
nonlinear parameter identification problem. Moreover, the instable LPMs (or TDREs) may be obtained due to
without any stability constraint considered in the identification procedure, such as several LPMs in [4] and
TDREs in [8] (which may accurately fit foundation frequency response in frequency domain but cause the
time-domain results instable rapidly and severely). Recently, Du et al. ! and Zhao and Du " apply the
genetic-simplex algorithm to the original nonlinear identification problem for DRA, where the stability
condition can be considered as penalty function.

This paper and an accompanying paper "'*! concentrate on the first step of the above systematic procedure. The
stability and identification of CRA realized as LPMs are studied in this paper, and those of DRA realized as
TDREs do in the accompanying paper "',

2. CONTINUOUS-TIME RATIONAL APPROXIMATION

From a viewpoint of system, the foundation-soil system form two interinvertible LTIC systems with single input,
single output and zero-initial condition, although it is only a physically real system intuitively (see Figure 1).
The foundation-soil system can not be conveniently solved in time domain, mainly because it is not a
differential system although is a LTIC system. To achieve this, the known exact foundation frequency response
(dynamic stiffness or flexibility) is approximated as a rational function in complex frequency in continuous-time
case. This rational function is called as CRA here. The dynamic-stiffness-form CRA (SCRA) can be written as
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where the order of the numerator polynomial N+1 is one more than that of the denominator N, S, is static
stiffness, § is the dimensionless complex frequency, S=i@w here, i= V-1 , w=wd/cg is the
dimensionless frequency with the characteristic length d (of foundation) and the (shear) wave velocity Cs (of
soil), and p;,q; are the undetermined real parameters which will be identified in next section. If the
high-frequency limit ¢, of dimensionless damping coefficient of dynamic stiffness is known, py,, =C.0y

so that SCRA is exact (doubly asymptotic) at high- and low-frequency limits. Correspondingly, the
dynamic-flexibility-form CRA (FCRA), reciprocal of SCRA, is
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where F;(=1/S,) is static flexibility. Once CRA is obtained, it can be realized as various types of LPMs.
Correspondingly, LPM also forms to two interinvertible systems in mathematics (see Figure 1).
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Figure 1 Foundation-soil system and its LPMs




3. STABILITY AND IDENTIFICATION

3.1. Stability

The stability of LPM is that of its dynamic-stiffness or -flexibility system, i.e. the stability of SCRA or FCRA.
In soil-structure-interaction analysis, due to LPM with force as input and displacement as output, the stability of
FCRA can guarantee the structure-foundation-soil system dynamically stable. Assume that the poles of SCRA

are S? for j=1,..,N, and the poles of FCRA are S}: for j=1,...,N +1, where the poles are zeros of their

denominator polynomial. According to the linear-system stability theory '), the stability conditions of a LPM
can be stated as follows:
(1) When applied to compute force from displacement, a LPM is dynamically stable if and only if the real parts

of all poles of its SCRA are negative, i.e. Re(sjS )< 0 for j=1,.,N.
(2) When applied to compute displacement from force, a LPM is dynamically stable if and only if the real parts
of all poles of its FCRA are negative, i.e. Re(sjF )< 0 for j=1,..,N+1.

Moreover, according to Routh-Hurwitz theorem, a simple instability criterion can be stated as follows:

(1) When applied to compute force from displacement, a LPM is instable if one or more parameters of
denominator polynomial of its SCRA are negative.

(2) When applied to compute displacement from force, a LPM is instable if one or more parameters of
denominator polynomial of its FCRA are negative.

3.2. Parameter Identification
The parameters in CRA can be obtained by fitting the exact foundation frequency response. The dynamic

stiffness and SCRA are used here. To achieve a stable result, the parameter identification requires solving the
following nonlinear least-squares fitting problem
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where L denotes the number of data points chosen of interest, | denotes the I-th data point, o, =A@, the

constraint condition is combined into the object function by penalty function method, PJ-S and PjF are the

penalty factors for different poles, PJ-S = PJ-F =1000 here, and the real number e(<0) is zero in theory but can

be negative to enlarge the penalty range so as to avoid a marginally stable time-domain result including noise.
Note that no frequency-dependent weight is required here.

The hybrid genetic-simplex optimization algorithm combining the genetic algorithm "*! and the Nelder-Mead
simplex method !"* is used to solve Eqn. 3.1 or 3.2. The flow chart of the hybrid algorithm that is implemented
into MATLAB sees Figure 2. The following three reasons make such hybrid algorithm become a proper choice
for Eqn. 3.1 or 3.2. First, this algorithm is a direct search method without the derivative of object function
required. Second, this algorithm can optimize a high-dimension problem (the dimension of problem is the
number of parameters to optimize). Third, no “exact” initial values are required since the genetic algorithm is a
global optimization method with random initial values.
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Table 1 CRAs and corresponding Wu-Lee LPMs for rocking surface circular foundation (N=2)

This paper
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Figure 4 Time-domain results for rocking surface circular foundation (N=2)



Table 2 CRAs and corresponding Wu-Lee LPMs for rocking surface circular foundation (N=3)

WoL This paper
u-hee (1, 1) (I, IV and e=—1)
Py 0.7019 0.81039514 0.92971660
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Figure 5 Time-domain results for rocking surface circular foundation (N=3)

4. NUMERICAL TESTS

The proposed stability theory and parameter identification method are verified via two examples used by Wu
and Lee ! and Wolf "\ The comparison is performed with their results. The parameters from [4, 1] are boldface.
The four constraint cases in our identification method are: (I) without any constraint; (II) constraint of



Re(s? )< 0; (IIT) constraint of Re(sjF )< 0; (IV) simultaneous constraints. The object function without penalty

in Eqn. 3.1 or 3.2 is defined as a global dynamic-stiffness error E. The dimensionless physical models with input
impulse shown in Figure 3, and the implicit Newmark time-integration method '"*! are used in time-domain

analysis. For LPMs, the dimensionless spring parameter IZJ- =k; / S, » dashpot parameter C; =C;Cq / (Sod) and

mass parameter M; =m jc§ / (Sod 2) are introduced, respectively.

4.1. Verifying Stability Theory

A rocking circular foundation on half-space elastic soil is analyzed. The radius of circular foundation
(characteristic length) is d. The mass density, shear modules and Possion ratio of soil are p, G, and v (=0.5

here), respectively. The shear wave velocity of soil is ¢ =4/G/p . The static stiffness is S, =8Gd”’ / [3(1 —V)].

The high-frequency limit of dimensionless damping coefficient is ¢, =3z(1-V)/16. The exact dynamic
stiffness sees [16].

For the case of N=2, the paramters of CRAs and corresponding LPMs and the global dynamic-stiffness errors
are listed in Table 1. The the time-domain results are shown in Figure 4. Wu-Lee parameters are instable for
either dynamic-stiffness or dynamic-flexibility system. The stability of parameters of this paper (I) is same as
that of Wu-Lee parameters due to without any stability constraint, but the global dynamic-stiffness error is less
which indicats that the proposed method is more effective than the linearized identification method. The
parameters of this paper (II, III, IV) are stable for both dynamic-stiffness and -flexibility systems but at the price
of the light loss of accuracy.

For the case of N=3, the results see Table 2 and Figure 5. This time, Wu-Lee parameters are stable for
dynamic-flexibility system but instable for dynamic-stiffness system. The stability of parameters of this paper (I,
II) is same as that of Wu-Lee parameters, but the global dynamic-stiffness error is less. The parameters of this
paper (II, IV) are stable for both dynamic-stiffness and -flexibility systems but at the price of the loss of
accuracy, where e =-—1 used to avoid the marginal stability.

Table 3 CRAs and corresponding Wu-Lee and Wolf LPMs for semi-infinite rod (N=3)

Wu-Lee This paper Wolf * f
Py 1.66 1.73561311 1.84874893
P2 2.71 2.57111362 2.39728651
p3 1.74 1.80599507 1.81344415
g 1.86 1.82740854 1.84775798
d; 1.76 1.81872359 1.81344415
a3 1.60 1.38630902 1.05678564
$S -0.7066 -0.795079 -0.930
) -0.1967 £ 0.9197 1 -0.258419 £ 0.916774 i -0.393+£0.929 i
sF -0.0380 + 0.9880 i -0.058047 £+ 0.989903 i -0.106062 = 1.011391 i
! -0.5058 £ 0.6193 i -0.593321 £0.617719 i -0.751938 £ 0.591515 i
k, 4.45 3.18811174 k,  —0.71686216 -0.605785
C; 4.44 2.78858518 k,  0.04108326 0.0559794
ky -8.47 -5.26271484 ky  —0.04684883 —-0.0639044
C,) -8.65 -6.11903670 k, 0.66617291 0.548601
|Z3 1.29 1.45701505 C; -0.90162326 -0.651197
Cs3 1.29 1.55910113 C, -0.00164224 -0.00306417
Ky -0.54 -0.83082499 C; 1.00164224 1.003064
Cy -1.27 -1.05836569 m  -0.00635496 -0.00779299

* In [1], the constant term in numerator polynomail of Eqn. 2.1 is 1.00032084 and €, = —0.00306417 .



For the cases of N=2 and 3, all conclusions obtained from the proposed stability theory accord with the results
of numerical tests, which indicates the correctness of the theory. Moreover, for same problem, the stability may
change for different N, and the accuracy is improved considerably with N increasing.

4.2. Verifying Accuracy of Identification

A semi-infinite rod on elastic foundation is analyzed. The elastic modulus, cross-sectional area, and mass
density of rod are E, A, and p, respectively. The spring stiffness per unit length of foundation is k. The

characteristic length is d = /[EA/k, . The wave velocity is cs =4 E/p . The static stiffness is S, = /EAK, .

The high-frequency limit of dimensionless damping coefficient is ¢, =1. The concrete description about this
problem sees [1, 4, 6].

The CRAs and corresponding LPMs are listed in Table 3 and 4 respectively for N=3 and 4. All parameters by
various identification methods are stable, which indicates that CRAs of semi-infinite rod problem may be stable
in nature. Therefore, this problem is proper to verify the accuracy of identification. The global dynamic-stiffness
errors are listed in Table 5. It is clear that the accuracy is improved with N increasing, and for same N the
parameters in this paper are more accurate.

Table 4 CRAs and corresponding Wu-Lee LPMs for semi-infinite rod (N=4)

Wu-Lee This paper = 04
Py 2.27 2.05591649 g 0.3 — This paper (Wu-Lee LPM)
Py 3.50 3.19687897 § TV This paper (Wolf LPM)
Ps 4.22 3.50217395 _§ 0.2
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G 2.17 2.01459812 f g 00
3.30 2.83729241 - g .
. 2.49 2.16158416 u £ N, N
> ' ' > G 0T T 3 40 50
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— =
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c 4.09 4.17164291 [
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_ £ 03] — Extended solution
Ky 2.67 2.46385625 § Bl R p— This paper (Wu-Lee LPM)
T4 2.17 222102147 2 024 | - WuLee
ke -2.76 ~2.70311907 °
Cs -4.30 -3.37780335 lé
Table 5 Global dynamic-stiffness errors for semi-infinite rod (10™) E
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Wolf Wu-Lee This paper Wu-Lee This paper ' ' '
9.956701  7.297607 5.894309 3.647233 2.964235 Dimensionless time
0<® <10,A® =0.01. Figure 6 Time-domain soil-structure-

interaction results for semi-infinite rod



The time-domain soil-structure-interaction analysis is performed by truncating the semi-infinite rod. The
truncated infinite part is modeled by LPM and the residue finite part does by finite element method. To test
stringently, only two finite elements with dimensionless element size AX =0.01 are used in finite part. The
extended solution is used as the reference one, which is obtained via taking the finite part large enough to
prevent any reflection from truncated boundary to rod end before dimensionless time 50. The displacement
results on rod end are shown in Figure 6. It is clear from the first figure of N=3 that for a same CRA obtained in
this paper the result of Wu-Lee LPM is identical with that of Wolf LPM, which indicates that the accuracy and
stability of CRA determine those of its resulting LPMs. In the second figure of N=3, all three results fit the
extended solution with large errors. The accuracy is improved considerably as increasing N to 4.

5. CONCLUSIONS

The stability and identification of CRA of foundation frequency response realized as LPMs are studied in this

paper. Some conclusions are summarized as follows:

(1) The accuracy and stability of CRA determine those of the resulting LPMs.

(2) A LPM corresponds to two interinvertible systems from a LTIC-system viewpoint: the dynamic-stiffness
system with SCRA as frequency response and the dynamic-flexibility system with FCRA as frequency
response. The stability of a LPM is determined by its SCRA or FCRA in terms of the case of its input and
output. In soil-structure-interaction analysis, LPM is with force as input and displacement as output.

(3) To avoid any instable LPM, the proposed stability condition should be considered in parameter
identification of CRA. A parameter identification method called as penalty genetic-simplex algorithm is
proposed, which is more effective than the linearized identification method widely used.

(4) The accuracy of LPMs based on CRA is improved with the order N of CRA increasing. Moreover, if without
any stability constraint, the stability of LPMs may vary with N for a foundation vibration problem. In
particular, LPMs of the semi-infinite rod on elastic foundation may be stable for all N in nature.
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