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ABSTRACT : 

Based on the damping solvent extraction method (DSEM), a new sub-regional explicit-implicit reciprocal solution 
method with integral strategy of mixed time step-size in time domain is proposed in this paper, to cope with the 
numerical analysis of dynamic soil-structure interaction. In the approach, an implicit integral arithmetic with big 
time step is applied in the computation of structure region, as explicit integral solution with small time step is used 
in the soil region. This method is convenient to combine the numerical advantages of big calculated time steps in 
implicit integration and wide applicability of explicit numerical integration. Furthermore, according to the 
similarity in the numerical expression between dynamic differential equations for structure and fluid mechanics, 
the above proposed solution methods on DSEM is extended to cope with the dynamic dam-reservoir interaction, in 
which the hydro dynamic pressure of unbounded water can be presented by explicit boundary interaction forces. 
Finally, some practical examples are presented to demonstrate that the evaluation efficiency can be efficiently 
improved in the condition of satisfying good engineering accuracy. 

KEYWORDS: Dynamic structure-foundation interaction analysis, Time-domain numerical method, 
Infinite soil, Damping solvent extraction method 

1. INTRODUCTION 

Time-domain analysis of dynamic soil-structure interaction plays an increasing role in practical applications 
as compared with the frequency-domain analysis. Efficient and accurate modeling of the unbounded soil or 
rock medium has been a key issue in such an analysis. Among those time-domain numerical models of 
unbounded soil, on the basis of the Damping Solvent Extraction Method (DSEM)[1], a directly time-domain 
stepwise solution method to compute the interface dynamic force, can be feasibly deduced in the formwork of 
Finite Element Method, which can avoids the complicated convolution integrals as in other time-domain 
models, and brings great convenience for the interaction numerical analysis. However, facing the large-scale 
interaction analysis, some advanced numerical measures or procedures are still needed to be studied and 
investigated to improve the evaluation efficiency above the earlier proposed time-domain interaction analysis 
method based on DSEM[2,3], mainly due to the fact that the analysis of the finite soil region adjacent to the 
local structure interface will cause relatively larger calculation amount. 
This paper presents some advanced numerical solution measures in time-domain, which mainly include the 
implemented formulation in the direct method analyzing the entire soil-structure system in a single step 
(DME), and a new sub-regional explicit-implicit reciprocal solution method with mixed time-step-size 
strategy (SRM). Particularly in the SRM, the deformational compatibility on the interface between structure 
and soil region can be naturally guaranteed, according to the same displacemental interpolation simulation in 
single time step for the explicit prediction-correction and implicit newmark-β integral arithmetic. 
Furthermore, according to the similarity in expression between structural dynamic differential equation and 
the displacemental wave equation for fluid mechanics, the above proposed solution methods on DSEM can 
also be easily extended to cope with the dynamic dam-reservoir interaction, in which the hydro dynamic 
pressure of unbounded water can be expressed by explicit boundary interaction forces. Finally, some practical 
examples are presented to demonstrate that the proposed procedures are of good accuracy and feasibility. 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
Researches in this paper can give strong technique supports 
for the deeper investigation of the time-domain dynamic 
interaction analysis on DSEM, and also enlarge its application 
scope. 

2. THEORETICAL COMPARISON AMAONG THE 
TIME-DOMAIN METHODS FOR DYNAMIC 
INTERACTION 

As is well known, the substructure and direct method are the 
general two major analysis patterns for the dynamic 
soil-structure interaction problem (see Figure 1). On the other 
hand, distinguished by the seismic input models, there mainly 
are three different kinds of basic solution equations[4]. 

2.1 The Substructure Method 

Under the conditions of force equilibrium and deformational compatibility at the interface nodes, the first kind 
of time-domain solution equations can be numerically induced in total motion as the following in the 
framework of the substructure method.  
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in which, the superscripts s  and e  denote the nodes on the generalized structure and the infinite soil, 
respectively. The subscripts b  and d  denote the nodes on the soil-structure interface and the nodes inside 
the generalized structure. { })( e

bf
s
b uuR −∞  means the interaction force of the undamped unbounded medium. 

e
bfu  denotes the input free-field motion at the interface. Under the dynamic load of relative deformation 

e
bf

s
b uu −  on the soil-structure interface, Eq.(1) expresses that the structural nodal forces keep dynamic 

equivalence to the interaction force in the soil side. 

2.2 The Direct Method 

There mainly are two different kinds of basic moving equations in the framework of the direct method: the 
seismic load input at the outer boundary of soil (see Eq.(2)), and the structural inertia load (alternatively, 
structural quasi-static load, see Eq.(6)).  
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In which, 
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In the above equations of (2) and (3), the subscripts m  and o denotes the nodes inside and located on the 
outer boundary of the bounded soil region. { }e

ou  is the seismic input motion in free field. Eq.(2) is presented 
on the assumption that the structural deformation does few effects on the input free-field motion e

ou  at the 
outer boundary of soil region. If eliminating the quantities of the nodes m  from Eq.(2), an alternative 
expression similar to Eq.(1) will be achieved.  
In the next step, by defining the unknown quantities of s

bu  in Eq.(1) as the input free-field motion adding an 
unknown relative displacement, 
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b
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Figure1 Dynamic interaction system (g) 
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Eq(1) results in  
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Also, Eq.(5) could be readily rewritten into a greatly simplified expression as 
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Where ][ ∞
bM , ][ ∞

bC , ][ ∞
bK  denote the condensation mass, damping and stiffness matrices of the infinite 

soil, respectively. Obviously, according to the input free-filed motion of e
bfu , the enforced external seismic 

loads, defined in the right side of Eq.(6), is given in the expression of the structural inertia loads. 

3. SUB-REGIONAL STEPWISE IMPLEMENTATION IN TIME-DOMAIN FOR DSEM 

To eliminate the absolute time variable t  and the convolution integrals involved in the time-domain basic 
equations of DSEM, an assumption is made in Paper[5] for the nodal displacements inside of the bounded soil 
medium, { })(turm , such that 

{ } { } { }mmrm vutu −=                                                                (7)

Accordingly, the time derivatives of { }rmu  can be given as 

{ } { } { } { }mmmrm vuutu &&& −+=  ,   { } { } { } { }mmmrm vutuu &&&&&&& −+= 2                              (8)
And thus yields the final expression of the interaction force in the infinite soil 

{ } [ ]{ } [ ]( ){ } }]{[}]{[}]){[]([2][)( mbmmbmbbbbbbbbbbbbb vKuKuCKuMCuMtR ζζζ ++−+−+=∞ &&&          (9)
And 

}]{[}]{[}]{[}]{[}]{[ bmbbmbmmmmmmmmm uCuKuKuCuM &&&& −−=++                        (10)

}]{[}]{[2}]{[}]{[}]{[ mmmmmmmmmmmmmmm uCuMvKvCvM &&&&&& +=++                       (11)

Where [ ] [ ]MM = , [ ]MC ζ2][ = , ][][][ 2 MKK ζ+=  are the mass, damping and stiffness matrices, 
respectively, and }{R  is the load vector, ζ is the linear artificial nodal damping 

Note the interaction force { })(tR∞  in Eq.(9) can be conveniently computed by employing a step-by-step 
integration algorithm. Also, note that }{ mu  and }{ mv  can be computed based on the partition forms of 
Eqs.(10) and (11), while { }bu  can be solved by combining Eq.(9) with the equation of motion of the 
generalized structure (See Eq.(1)). Introducing Eq.(9) into Eq.(1) will yields the following equation of motion 
for the whole generalized dynamic system. 
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Thus, responses of the total dynamic system can be solved step by step from Eq.(12) under the prescribed 
seismic excitations }{ e

bfu , }{ e
bfu&  and }{ e

bfu&& . It should be mentioned that in some cases only the earthquake 
ground acceleration }{ e

bfu&&  is available for the analysis while the displacement and velocity excitations have 
to be obtained by integrating the acceleration. The direct integration of acceleration may cause unrealistic 
drifts in displacement and velocity [6]. To solve this problem, Paper [7] suggests a least-square curve fitting 
technique, which can be used to directly process the acceleration time series to derive reasonable displacement 
and velocity excitations. More simply, a seismic input model for DSEM is suggest by Chen[8] in the patterns of 
masss-proportional loads, in which only the seismic acceleration history is needed. 

4. ADVANCED SUBREGIONAL EXPLICIT-IMPLICIT RECIPROCAL SOLUTION PROCEDURE 
WITH MIXED TIME STEP-SIZE STRATEGY 

As is well known, to solve the common structural dynamic equations, implicit numerical integral algorithms 
(such as Newmark- β , Willson-θ  numerical integration) and explicit numerical integral algorithms (such as 
prediction-correction explicit integration method) are the two usual basic approaches.    
Implicit integration has such advantages as better numerical integral stability for the usual dynamic analysis, 
bigger integral time step (such as 0.02s) for the large-scale dynamic problem. However, application practices 
also show that the solution accuracy of the implicit integral algorithm is accidentally low for the special 
dynamic problem of infinite region. On the other hand, explicit integral algorithm avoids the computation of 
the inverse stiffness, which results in a smaller calculation amount in one time step. However, its integral time 
step (such as 0.0005s) must be small enough to meet the requirements of integration stability.  
Therefore, A new coupling sub-regional explicit-implicit reciprocal solution method is presented in this paper 
to reconcile their respective merit, which involves a explicit solution algorithm in the soil side, and a implicit 
solution algorithm in the structural side. To further reduce the structural extra computation amount leading by 
the implicit integration with a same small time step to the soil side, different integral time-steps (SRM) are 
suggested to be separately adopted in each sub-region of structure and soil. 
And thus, the procedure of solving the Eqs.(12), (10) and (11) can be divided into the following three main 
steps. 
Firstly, delt  is defined as the bigger integral time step in the structural side, which is m  times as the 
smaller one dt  in the soil side. Obviously, applying the prediction-correction explicit integration method in 
the Eqs.(10) and (11) , will results in 

dtt
mu +  )(1

t
muA= )(1

1
dtt

bmb
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bmbmm uCuKMB ++− +− &                                         (14)
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Where, )(1
t
muA , )(2

t
mvA  and B1, B2, are explicitly numerical matrix function of the previous integral time step.

Secondly, in one integral time step form t  to t delt+ , the nodal deformations on the soil-structure interface 
are assumed to satisfy the following interpolation relations, 

( ) /t i dt t t delt t
b b b bu u u u i m+ ⋅ += + − ⋅  ,  ( ) /t i dt t t delt t

b b b bu u u u i m+ ⋅ += + − ⋅& & & &                          (16)

Thirdly, by introducing the Eqs of (15) and (16) into the solution to the dynamic equation of (12), the 
structural dynamic response can be easily implicitly solved with the bigger integral time step delt . 
Certainly, according to the same displacemental interpolation simulation in a single time step for the explicit 
prediction-correction in the soil side and implicit newmark-β integral arithmetic adopted in the structure side, 
the deformational compatibility on the soil-structure interface can be naturally guaranteed [9]. 

5. TIME-DOMAIN NUMERICAL ANALYSIS ON DSEM FOR THE DYNAMIC DAM-RESERVOIR 
INTERACTION 

Compared with the basic dynamic differential equations of the elastic body as follows 
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in which, iu  is the nodal displacement components. sK , G , μ  and sρ  denote the Bulk modulus, Shear 
modulus, Poisson ratio, and Density of the elastic material, respectively.  
The basic dynamic differential equations for the fluid mechanics can be presented in the patterns of nodal 
displacement as 

kiki ucu ,
2=&&                                                                     (18)

Where, ρ/Kc =  is the wave velocity in the liquid field. K  and ρ  denote the Bulk modulus and 
Density of liquid. 

Obviously, the above two equations are very similar in the expression forms, according to the coefficient 
matrix of 2c  in Eq.(18) and the one of  )1/(2/3 μρ +ssK  in Eq.(17). Therefore, it can be easily assumed 
that the solution method to Eq.(17) is also suit for the solution to the dynamic responses of infinite liquid field 
(See Eq.(18)). In other words, the proposed DSEM can possibly analyze the dynamic interaction between 
infinite reservoir and dam.  
To verify this assumption, the computation of dynamic hydraulic pressure, a key problem in the dynamic 
dam-reservoir interaction, is take as a study aim. Same to the proposed DSE time-domain method in the above 
section 3, the following notes are firstly defined, 

][][ LL MM = , ][2][ LL MC ζ= , ][][][ 2 LLL MKK ζ+=                             (19)

In which, ][ LK 、 ][ LM 、 ][ LC  denote the stiffness, mass and damping matrices in water field, respectively. 
ζ is the artificially introduced nodal damping in water. The topscript of L  means the reservoir. 

Thus, Similar to the Eq.(9), the dynamic hydraulic pressure { }LR of reservoir water can be given as 

{ } ( )LLbLL vuKR ζ+= ][                                                            (20)

Where, the subscripts of b  and L  denote the inside and interface nodes in reservoir. Excited by the 
deformation of { }bu  predefined at the dam-reservoir interface nodes, { }Lu  and { }Lv  can be solved on the 
basis of the Eqs. of (21) and (22). 

{ } { } { } { }bLbLLLLLLLLL uKuKuCuM ][][][][ −=++ &&&                                      (21)

{ } { } { } { } { }LLLLLLLLLLLLLLL uCuMvKvCvM ][][2][][][ +=++ &&&&                            (22)

During the practical computation, it should be mentioned that, 
(a) If utilizing the relations of Eq.(17) to solve the Eq.(18) in water field, the Shear modulus G  of water 
should be zero, which reflects that water can not bear the shear stress. However, in the practical evaluation, 
G  can be assumed as a very small positive number, to avoid the numerical oddity of stiffness matrix of 
water. Herein, such parameters are used as the Bulk modulus of K=2.067e9 for water, and the Shear modulus 
G=K*10-9, Poisson ratio μ =0.5. 

(b) If presented in the forms of nodal displacement, the computation procedures of mass and stiffness matrix 
in liquid field are same to the structure analysis. Since the damping matrix mainly reflects the effects of 
medium viscous, the seismic analysis of liquid field can be relatively conservative by ignoring the viscous 
properties of water.  
(c) To deal with the dynamic dam-reservoir interaction analysis, the described computation method of 
dynamic hydraulic pressures can be combined with the structural dynamic equation of dam, similar to the 
Eq.(12).   

6. NUMERCIAL EXAMPLES 
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In this section, accuracy and efficiency of the proposed schemes are evaluated using several examples.

6.1 Dynamic Interaction Analysis of Dam and Soil Region 

Figure 2 shows a concrete gravity dam supported by 
unbounded medium. The dam has a height of 103m, a crest 
width of 13.8m and a base width of 70.1m. The material 
properties of the concrete dam are given as follows: Young’s 
modulus GPaE 30= , Poisson’s ratio 20.0=μ , Density 

3/2500 mkg=ρ , while the ones of the unbounded 
medium are as the following: GPaE 15= , 20.0=μ , and 

3/2500 mkg=ρ . The transient displacement excitation as 
prescribed by Eqn.(23) is assumed to act on the 
soil-structure interface. 
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Where, the amplitude 0u  is assumed to be 0.1m. Two different excitation periods, i.e, T=0.2s and 0.8s are 
investigated to show the various effects on the dynamic responses of dam for the relatively low-frequency and 
high-frequency components in seismic wave. During numerical computation in this subsection, a constant 
explicit integral time step is used as sdt 0005.0= in the soil region, while various implicit integral time steps 
of sdelt 0005.0=  and sdelt 02.0=  are compared in the structure region. That means, the proposed 
SRM-DSE method will be utilized when dtsdelt 4002.0 == . 

   
(a) excitation period of T=0.2s                                    (b) excitation period of T=0.8s 

Figure3 Displacemental responses at the dam crest  

Figure 3 presents the computed displacement response at dam crest for the two cases of excitation period. One 
may note that, during the forced vibration stage for both excitation periods of T=0.2s and 0.8s, compared with 
the basic case of sdelt 0005.0=  (as a same time-step used for implicit and explicit integration), no obvious 
changes appear in the phase at the SRM case of sdelt 02.0= , but only peak responses at the dam crest 
decrease for about 10%. In other words, the adoption of SRM method has a similar effect on the dynamic 
responses of dam as a certain of the computational damping increase. In views of practical applications, such a 
computational accuracy is yet permitted, which approves that the application of SRM method indeed yields a 
great decrease in computational amount without unreasonable loss in accuracy. 

6.2 Numerical Computation of Dynamic Hydraulic Pressure 

Figure 4 shows a grid gravity dam with a vertical upstream face. The dam has a height of 130m, with a water 
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Figure2 Dynamic dam-soil interaction 
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level of H0=100m in front of the dam. The material 
properties of the reservoir water are given as follows: Bulk 
modulus GPaK 067.2= , Poisson’s ratio 20.0=μ , and 
Density 3/1000 mkg=ρ . In order to investigate the 
dynamic effects of the reservoir water, a transient 
acceleration excitation acting on the dam-reservoir interface 
in the horizontal direction, as prescribed by Eqn.(24), is 
assumed to compute the dynamic hydraulic pressure. 

⎩
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=
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))/2cos(1(
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tab

π
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Tt

8
8

>
≤

       (24) 

Where, the amplitude 0a  is assumed to be 0.1m/s2, and the 
excitation period T=0.6s. The computation procedure for dynamic hydraulic pressure in Eqn.(20) is similar to 
the dynamic interaction force in unbounded soil region in the Eqn.(9).  
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        Figure5 Amplitude distribution of dynamic hydraulic pressure 

  
(a) t=1.5s                            (b) t=3.3s                        (c) t=4.5s 

Figure6 distribution of dynamic hydraulic pressure at various time step 

Compared with the results by using the extended mesh model, and the Westergaard model, Fig.5 presents the 
amplitude distribution of dynamic hydraulic pressure along the height level. It is obvious that, by using the 
proposed DSE method in this paper, the computational results are identical to the accurate results of the 
extended mesh model at the middle and upper parts of dam, while the results of Westergaard model give an 
great exaggeration. Furthermore, Fig.6 presents the comparison of the computated dynamic hydraulic pressure 
at various time steps, giving a similar change trend as shown in the Fig.5.  
It should be mentioned that, the introduced artificial nodal damping can not distinguish the effects along 
various coordinate axes (such as X and Y in this numerical example). In other words, the computed dynamic 
hydraulic pressure in the horizontal direction possibly be unreasonably affected by the introduced artificial 

Figure4 Dynamic dam-reservoir interaction
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nodal damping in the vertical direction. That is also the main reason for the evident difference of the results of 
the proposed DSE method existing at the bottom part of the dam, as compared to the extended mesh model. 
To overcome this problem, an advanced DSE method, with different artificial damping introduced in various 
coordinate axes, is offered to cope with the computation of dynamic hydraulic pressure only in the horizontal 
X direction. However, it is positively recognized that, gross of the dynamic hydraulic pressure can still be 
exactly determined, even only by using the proposed cursory DSE model in this paper for the liquid 
mechanics. 

7. CONCLUSIONS  

A sub-regional stepwise DSE method with an integration strategy of mixed time step-size is firstly described in 
this paper to deal with the time-domain analysis for the dynamic soil-structure interaction problems. A detailed 
evaluation of the performance of the formulation has been carried out for a concrete gravity dam located on a 
half-space and subjected to a harmonic excitation. And then, the DSE method is extended to compute the 
dynamic hydraulic pressure. In views of practical accuracy, the comparison of the various responses of the 
results with those obtained using other models indicates that the proposed methods are feasible and efficient 
for solving practical dynamic interaction problems. 
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