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Abstract—This paper proposes a multiobjective harmony
search (MOHS) algorithm for optimal power flow (OPF) prob-
lem. OPF problem is formulated as a nonlinear constrained
multiobjective optimization problem where different objectives
and different constraints have been considered. Fast elitist non
dominated sorting and crowding distance have been used to find
and manage the Pareto optimal front. Finally, a fuzzy based
mechanism has been used to select a compromise solution from
the Pareto set. The proposed MOHS algorithm has been tested on
IEEE 30 bus system with different objectives. Simulation results
clearly show that the proposed method is able to generate true
and well distributed Pareto optimal solutions for OPF problem.

I. I NTRODUCTION

In real world optimization problems, multiple competing
objectives make us solve them simultaneously instead of
solving them separately. This gives rise to a set of optimal
solution (Largely known as Pareto optimal solution) rather
than a single optimal solution. In the absence of a knowledge,
it is not possible to find a better solution than others from the
Pareto optimal solutions [1]. Because, one can not be better
than other without any further information. Therefore, it is
necessary to find as many Pareto optimal solutions as possible.
Classical methods do convert the multi objective optimization
problem to a single objective optimization problem by a
suitable scaling/weighting factor method. This results in a
single optimal solution. To obtain a Pareto optimal solutions,
it should be run as many times as the number of solutions.

OPF problem is a nonlinear, constrained optimization prob-
lem where many competing objectives are present. Tradition-
ally, OPF problem has been solved for different objectives as
a single objective optimization problem [2]–[5]. This resulted
in a optimal solution which satisfies one objective and not
others. Therefore, to satisfy and find a compromise solution
between two competing objectives, OPF problem is solved as a
multiobjective optimization problem with different constraints.

Traditionally, multiobjective OPF problem has been solved
by weighted sum andǫ-constraint method [6]. The weighted
sum method converts multiobjective optimization problem to
a single objective optimization problem by giving suitable
weights to the objectives. Whereas,ǫ-constraint method treats
most preferred objectives for optimization and non preferred
objective as a constraint in the allowable rangeǫ. This range
is further modified to obtain a Pareto optimal solution. These

methods require multiple runs to obtain a Pareto optimal
solution and need much computational time resulting in a
weakly non-dominated solution.

Recently, multiobjective evolutionary algorithms have been
reported to solve environmental/economic dispatch (EED),
OPF and VAR dispatch problem [7]–[12]. These evolutionary
algorithms are proved to be better than traditional method
because of their ability to obtain a Pareto optimal solution in
a single run. Since evolutionary algorithms use a population
of solutions, they can be easily extended to maintain a diverse
set of solutions in a single run. Most evolutionary algorithms
reported for EED, OPF and VAR problems, use non dominated
sorting , strength Pareto approach for maintaining a diverse
Pareto optimal solutions. This paper considers the non domi-
nated sorting and crowding distance method proposed by Deb
[13] to maintain a well distributed Pareto optimal solutions.

Harmony search (HS) algorithm has been recently devel-
oped [14] in an analogy with improvisation process where
musicians always try to polish their pitches to obtain a
better harmony. Music improvisation process is similar to the
optimum design process which seeks to find optimum solution.
The pitch of each musical instrument determines the certain
quality of harmony, just like the objective function assigned
to the set of variables. In this paper, HS algorithm is extended
using fast non dominated sorting and ranking procedure to find
a Pareto optimal solutions for OPF problem with competing
objectives. Finally a fuzzy based mechanism is used to find
a compromise solution from the Pareto optimal solution. This
multiobjective harmony search (MOHS) algorithm has been
tested on a standard IEEE 30 bus test system for competing
objectives. Simulation results clearly show the robustness
of the MOHS method to obtain a well distributed optimal
solutions.

II. PROBLEM FORMULATION

The OPF problem is a non linear, non convex optimization
problem which determines the optimal control variables for
minimizing the certain objectives subject to the several equal-
ity and inequality constraints. The OPF problem is generally
formulated as follows.
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A. Objective functions

1) Fuel cost minimization: This objective is to minimize
the total fuel costFT of the system. The fuel cost curves of
the thermal generators are modeled as a quadratic cost curve
and can be represented as

FT =

NG
∑

i=1

(aiP
2

i + biPi + ci) $/hr (1)

whereai, bi, ci are the fuel cost coefficients of theith gener-
ator,Pi is real power output of theith generator andNG is
the total number of generators in the system.

2) Real power loss: This objective is to minimize the real
power transmission line lossesPL in the system which can be
expressed as follows.

PL =
nl
∑

k=1

gk[V
2

i + V 2

j − 2ViVjcos(δi − δj)] (2)

wheregk is the conductance of a transmission linek connected
betweeni andjth bus,nl is the total number of transmission
lines,Vi, Vj , δi andδj are the voltage magnitudes and phase
angles ofi andjth bus respectively.

3) L-Index: This objective is to maintain the voltage stabil-
ity and move the system far away from the voltage collapse
point. This can be achieved by minimizing the voltage stability
indicator L-index [15], [16]and can be expresses as

Lmax = max{Lk, k = 1, 2, · · · , nl} (3)

B. Constraints

1) Equality constraints: These constraints are typical load
flow equations which can be described as follows

PGi−PDi−Vi

NB
∑

j=1

Vj(Gij cos δij+Bij sin δij) = 0 i ∈ NPQ

(4)

QGi−QDi−Vi

NB
∑

j=1

Vj(Gij sin δij−Bij cos δij) = 0 i ∈ NG

(5)
wherePGi is the real power generation atith bus,PDi is
the real power demand atith bus,QGi is the reactive power
generation atith bus,QDi is the reactive power demand atith
bus,Bij is the suceptance of the line connected betweeni and
jth bus,NB is the total number of buses,NPQ is the number
of load buses andNG is the number of generator buses in the
system.

2) Inequality constraints: These constraints represent the
system operating limits as follows

1) Generation constraints: Generator voltages, real power
outputs and reactive power outputs are restricted by their
lower and upper bounds as follows:

V min

Gi ≤ VGi ≤ V max

Gi , i = 1, · · · , NG (6)

Pmin

Gi ≤ PGi ≤ Pmax

Gi , i = 1, · · · , NG (7)

Qmin

Gi ≤ QGi ≤ Qmax

Gi , i = 1, · · · , NG (8)

2) Transformer constraints: Transformer tap settings are
restricted by their minimum and maximum limits as
follows:

Tmin

i ≤ Ti ≤ Tmax

i , i = 1, · · · , nt (9)

3) Shunt VAR constraints: Reactive power injections at
buses are restricted by their minimum and maximum
limits as:

Qmin

ci ≤ Qci ≤ Qmax

ci , i = 1, · · · , nc (10)

4) Security constraints: These include the constraints of
voltage magnitudes at load buses and transmission line
loadings as follows:

V min

Li ≤ VLi ≤ V max

Li , i = 1, · · · , NPQ (11)

Sli ≤ Smax

li , i = 1, · · · , nl (12)

III. M ULTIOBJECTIVE OPTIMIZATION

Many real world optimization problem involve simultaneous
optimization of several conflicting objectives. Multiobjective
optimization problems with such conflicting objectives give
rise to a set of optimal solution, rather than a single optimal
solution. Because, no solution can be considered to be better
than other solutions with out a information. These set of
optimal solutions are called as a Pareto optimal solutions.

A general multiobjective optimization problem consists of
multiple objectives to be optimized simultaneously and the var-
ious equality and inequality constraints. This can be generally
formulated as

Min fi(x), i = 1, 2, · · · , N (13)

Subject to :

{

gj(x) = 0, j = 1, 2, · · · ,M
hk(x) ≤ 0, k = 1, 2, · · · , K

(14)

wherefi is the ith objective function,x is a decision vector
that represents a solution,N is the number of objective
functions,M andK are the number of equality and inequality
constraints respectively.

For a mutliobjective optimization problem, any two solu-
tions x1 and x2 can have any one of two possibilities, one
dominates other or none dominates other. In a minimization
problem, with out loss of generality, solutionx1 dominatesx2

if the following conditions are satisfied.

1. ∀i ∈ {1, 2, · · · , N} : fi(x1) ≤ fi(x2) (15)

2. ∃j ∈ {1, 2, · · · , N} : fj(x1) < fj(x2) (16)

If any one of the above conditions is violated, then the solution
x1 does not dominatex2. If x1 dominates the solutionx2, x1

is called as the non dominated solution. The solutions that are
non dominated within the entire search space are denoted as
Pareto optimal solutions.
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IV. H ARMONY SEARCH ALGORITHM

The harmony search (HS) algorithm, proposed by Geem
[14], is a nature inspired algorithm, mimicking the improvisa-
tion of music players. The harmony in music is analogous to
the optimization solution vector, and the musician’s improvi-
sations are analogous to the local and global search schemes in
optimization techniques. The HS algorithm uses a stochastic
random search, instead of a gradient search. This algorithm
uses harmony memory considering rate and pitch adjustment
rate for finding the solution vector in the search space.

The HS algorithm uses the concept, how aesthetic estima-
tion helps to find the perfect state of harmony, to determine the
optimum value of the objective function. The HS algorithm is
simple in concept, few in parameters and easy in implementa-
tion. It has been successfully applied to various optimization
problems. The optimization procedure of the HS algorithm is
as follows:

1) Initialize the optimization problem and algorithm param-
eters.

2) Initialize the harmony memory.
3) Improvise a new harmony memory.
4) Update the harmony memory.
5) Check for stopping criteria. Otherwise, repeat step 3 to

4.

The detailed description of the above steps are given in
[17]–[19] and the brief explanation is given in the following
sections.

A. Initialization of problem and HS algorithm parameters

In this step, the optimization problem is specified as follows

Min f(x)

subject to

g(x) = 0

xk,min ≤ x ≤ xk,max k = 1, 2, · · · , N

where f(x) is the objective function,g(x) is the equality
constraint,x is the set of decision variables,xmin ,xmax are
minimum and maximum limits of decision variables andN is
the number of decision variables. The HS algorithm parameter
are also specified in this step. These are the harmony memory
size (HMS) or the number of solution vectors in the harmony
memory, harmony memory considering rate (HMCR), pitch
adjustment rate (PAR), bandwidth rate (BW) and the number
of improvisations (NI) or the stopping condition.

B. Initialization of harmony memory

The harmony memory (HM) is a memory location where
all the solution vectors (sets of decision variables) are stored.
The HM is similar to the number of population in other
evolutionary algorithms. The HM matrix (17) is filled with as
many randomly generated values between its minimum and

maximum limits.

HM =















x1

1
x1

2
· · · x1

N−1
x1

N

x2

1
x2

2
· · · x2

N−1
x2

N
...

...
...

...
...

xHMS−1

1
xHMS−1

2
· · · xHMS−1

N−1
xHMS−1

N

xHMS
1

xHMS
2

· · · xHMSN−1
xHMSN















(17)

C. Improvisation of a new harmony from the HM

A new harmony vector,X ′ = (x′

1
, x′

2
, · · · , x′

N ) is generated
based on three rules: 1) memory consideration, 2) pitch ad-
justment and 3) random selection. Generating a new harmony
is called as improvisation.

In the memory consideration, the value of decision variables
X ′ for the new vector are selected from(x1 − xHMS). The
harmony memory considering rate (HMCR), which varies
between 0 and 1, is the rate of choosing one value from the
historical values stored in HM, while (1-HMCR) is the rate
of randomly selecting one value from the possible range of
values as

x′

i =

{

x′

i ∈ {x1

i , x
2

i , · · · , x
HMS

i } if rand ≤ HMCR

x′

i ∈ Xi Otherwise
(18)

where rand is the uniform random number in the range
between 0 and 1 andXi the set of possible range of values
for each decision variable, that isxi,min ≤ Xi ≤ xi,max.

For example, a HMCR of 0.8 indicates that the HS al-
gorithm will choose the decision variable from historically
stored values in the HM with an 80% probability or from
the possible range of values with a 20% probability. After
the memory consideration, every component is examined to
determine whether it should be pitch adjusted. This operation
uses the PAR parameter, which is the rate of pitch adjustment
as follows;

x′

i =

{

x′

i ± rand× BW if rand ≤ PAR

x′

i Otherwise
(19)

whereBW is the arbitrary distance bandwidth.
To improve the performance of the HS algorithm, PAR and

BW are changed during each generation as follows;

PAR(g) = PARmin +
PARmax − PARmin

NI
× g (20)

wherePAR(g) is the pitch adjusting rate of current generation,
PARmin is the minimum pitch adjusting rate,PARmax is the
maximum pitch adjusting rate,g is the current generation
number andNI is the number of improvisations.

BW(g) = BWmaxexp(
Ln( BWmin

BWmax
)

NI
× g) (21)

whereBW(g) is the bandwidth rate of current generation,BWmin
is the minimum bandwidth rate andBWmax is the maximum
bandwidth rate.
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D. Updating the harmony memory

Updating the harmony memory in HS algorithm for multi-
objective optimization problem differs from that of basic HS
algorithm. In this work, non dominated sorting and ranking
scheme, proposed by Deb is used to find the Pareto optimal
solutions. The new harmony memory, generated by improvisa-
tion process, is combined with the existing harmony memory
to form 2 × HMS solution vectors. Then non dominated
sorting and ranking procedure is performed on the combined
harmony memory. Once the ranking is assigned to all the
solution vectors in the combined harmony memory, a diversity
rank is assigned to the solution vectors, which are in the same
non dominated front, using the crowding distance metric. The
crowding distance is an indication of the density of the solution
vectors surrounding a particular solution vector. The measure
of crowding distance is generally based on the average distance
of the two solution vectors on either side of a solution vector,
along each of the objectives. Finally, the bestHMS harmony
memory is selected from the combined harmony memory in
the order of their ranking for the next improvisation. To choose
exactlyHMS solution vectors from the last non dominated
front, crowded comparison operator is used to select the best
solutions needed to fill theHMS.

E. Stopping condition

The HS algorithm is stopped when the number of improvi-
sations (NI) has been met. Otherwise sections IV-C and IV-D
are repeated.

F. Best compromise solution

Having obtained the Pareto optimal set, choosing a best
compromise solution is important in decision making process.
In this paper, fuzzy membership approach is used to find a best
compromise solution. Due to imprecise nature of the decision
maker’s judgment theith objective functionfi of individualk
is represented by a membership functionµk

i defined as

µk
i =















1 fi ≤ fmin

i

fmax

i − fi
fmax

i − fmin

i

fmin

i < fi < fmax

i

0 fi ≥ fmax

i

(22)

wherefmin

i andfmax

i are the minimum and maximum value
of ith objective function among all non dominated solutions,
respectively.

For each non dominated solutionk, the normalized mem-
bership functionµk is calculated as

µk =

N
∑

i=1

µk
i

P
∑

k=1

N
∑

i=1

µk
i

(23)

whereP is the total number of non dominated solutions. The
best compromise solution is that having maximum value of
µk.

V. I MPLEMENTATION OF THE PROPOSEDAPPROACH

The proposed approach to solve OPF problem is described
in the following steps.

1) Input the system parameters, minimum and maximum
limits of control variables.

2) Choose the harmony memory sizeHMS, pitch ad-
justing ratePAR, bandwidthBW and the maximum
number of improvisationsNI.

3) Initialize the harmony memoryHM as explained in the
section IV-B. While initializing, all the control variables
are randomly generated with in their limits.

4) Start the improvisation.
5) For each solution vector inHM , evaluate the objective

functions.
6) Improvise the new harmony memory as explained in the

section IV-C.
7) Perform the non dominated sorting and ranking on the

combined existing and new harmony memory.
8) Choose the best harmony memory from the combined

solution vectors as given in the section IV-D for the next
improvisation.

9) Check for stopping conditions. If the number of impro-
visations has been reached to the maximum, go to next
step. Otherwise, go to step 5.

10) The non dominated solution vectors in theHM are
Pareto optimal solutions.

11) Best compromise solution vector is taken from the
Pareto optimal set using fuzzy membership approach.

VI. SIMULATION RESULTS

In order to validate the robustness of the proposed MOHS
method, a standard IEEE 30 bus system has been considered.
This system consists of 6 generators at buses 1, 2, 5, 8, 11 and
13, 4 transformers with off-nominal tap ratio in the lines 6-9,
6-10, 4-12 and 27-28 and reactive power injection at the buses
10, 12, 15, 17, 20, 21, 23, 24 and 29. The complete system
data with minimum and maximum limits of control variables
are given in [2]. The network diagram of IEEE 30 bus system
is shown in Fig 1. In this paper, three objectives, namely, fuel
cost , losses and L-index have been considered.

Before MOHS is applied to OPF problem, following pa-
rameters need to be defined. They are, harmony memory size
HMS = 50, harmony memory considering rateHMCR =
0.85, pitch adjusting ratePARmin = 0.2 andPARmax = 2,
bandwidthBWmin = 0.45 andBWmax = 0.9 and the number
of improvisationsNI = 500.

A. Case 1: Fuel cost Vs Losses

In this case, two competing objectives, i.e., fuel cost
and losses, were considered. This multiobjective optimization
problem was solved by the proposed approach. The Pareto
optimal solution obtained using the proposed MOHS algorithm
is shown in Fig. 2. From the Pareto optimal solution, it is clear
that the proposed MOHS method is giving well distributed
solutions. The compromise solution was found using the fuzzy
membership approach. The best solution vectors for minimum
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Fig. 1. Single Line Diagram of IEEE 30 Bus Test System
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Fig. 2. Pareto Optimal Solutions For Case 1

cost, minimum loss and the compromise solution are given in
Table I.

B. Case 2: Fuel cost Vs L-index

In this case, L-index is considered in place of transmission
losses. L-index gives a scalar number to each load bus This
index uses information on a normal power flow and is in
the range zero (no load case) to one (voltage collapse). To
maintain the voltage stability and move away from voltage
collapse point, maximum value of L-index among load buses
Lmax must be minimized. These two competing objective

TABLE I
OPTIMAL SOLUTION FOR CASE 1

Variables Best Cost Best Losses Best Compromise

PG1 MW 161.2088 84.6404 124.1938

PG2 MW 54.7416 52.3695 50.6518

PG5 MW 22.8866 47.9821 32.4311

PG8 MW 18.1654 34.6415 34.6415

PG11 MW 13.9513 29.0215 26.6144

PG13 MW 20.3588 38.1759 20.0232

V1 (p.u) 1.0939 1.0914 1.0980

V2 (p.u) 1.0820 1.0798 1.0826

V5 (p.u) 1.0555 1.0555 1.0555

V8 (p.u) 1.0661 1.0661 1.0661

V11 (p.u) 1.0958 1.0958 1.0946

V13 (p.u) 1.0949 1.0949 1.0997

T6−9 1.0724 0.9628 0.9775

T6−10 0.9181 1.0392 0.9647

T4−12 0.9818 0.9818 0.9885

T28−27 0.9699 0.9699 0.9709

Qc10 (p.u) 0.0137 0.0493 0.0288

Qc12 (p.u) 0.0344 0.0280 0.0497

Qc15 (p.u) 0.0347 0.0413 0.0474

Qc17 (p.u) 0.0367 0.0476 0.0365

Qc20 (p.u) 0.0459 0.0422 0.0484

Qc21 (p.u) 0.0485 0.0465 0.0470

Qc23 (p.u) 0.0383 0.0360 0.0425

Qc24 (p.u) 0.0447 0.0119 0.0411

Qc29 (p.u) 0.0430 0.0267 0.0355

Fuel cost$/hr 803.6838 909.3377 828.1713

Loss 7.9123 3.5258 5.2701

799.5 800 800.5 801 801.5 802
0.104
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L 
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Fig. 3. Pareto Optimal Solutions For Case 2

functions were optimized by the proposed MOHS method.
The Pareto optimal solution for this case is shown in Fig. 3.
The best solution vectors are also given for minimum cost,
minimum L-index and compromise case in Table II.
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TABLE II
OPTIMAL SOLUTION FOR CASE 2

Variables Best Cost Best L-Index Best Compromise

PG1 (MW) 176.4070 177.6569 176.4756

PG2 (MW) 48.1795 48.1795 48.1795

PG5 (MW) 21.9466 21.9466 21.9466

PG8 (MW) 21.3504 20.2148 21.3504

PG11 (MW) 11.7238 11.6816 11.7238

PG13 (MW) 12.4769 13.0176 12.4769

V1 (p.u) 1.0999 1.0999 1.0999

V2 (p.u) 1.0949 1.0976 1.0949

V5 (p.u) 1.0767 1.0959 1.0767

V8 (p.u) 1.0840 1.0995 1.0840

V11 (p.u) 1.0985 1.0985 1.0990

V13 (p.u) 1.0996 1.0996 1.0996

T6−9 0.9022 0.9022 0.9400

T6−10 1.0718 0.9007 0.9007

T4−12 1.0156 0.9010 0.9213

T28−27 0.9690 0.9157 0.9327

Qc10 (p.u) 0.0490 0.0490 0.0490

Qc12 (p.u) 0.0495 0.0495 0.0495

Qc15 (p.u) 0.0478 0.0478 0.0488

Qc17 (p.u) 0.0363 0.0478 0.0478

Qc20 (p.u) 0.0054 0.0493 0.0500

Qc21 (p.u) 0.0497 0.0497 0.0456

Qc23 (p.u) 0.0467 0.0467 0.0490

Qc24 (p.u) 0.0496 0.0496 0.0496

Qc29 (p.u) 0.0460 0.0483 0.0483

Fuel Cost $/hr 799.6217 801.5094 799.8494

L-Index 0.1166 0.1049 0.1087

VII. C ONCLUSIONS

In this paper, different multi-objectives for OPF problem
were formed. These multi-objectives have been solved by
the proposed MOHS algorithm. Non-dominated sorting and
ranking with crowded comparison operator were used to
find and maintain the Pareto optimal solutions. Finally, a
fuzzy membership approach has been used to identify the
best compromise solution. From the simulation results, the
proposed MOHS method is able to give well distributed Pareto
optimal solutions for OPF problem with different objectives.
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