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Abstract—This paper proposes a multiobjective harmony methods require multiple runs to obtain a Pareto optimal

search (MOHS) algorithm for optimal power flow (OPF) prob-  splution and need much computational time resulting in a
lem. OPF problem is formulated as a nonlinear constrained weakly non-dominated solution.

multiobjective optimization problem where different objectives . . .
and different constraints have been considered. Fast elitist non ~ Recently, multiobjective evolutionary algorithms have been

dominated sorting and crowding distance have been used to find reported to solve environmental/economic dispatch (EED),
and manage the Pareto optimal front. Finally, a fuzzy based OPF and VAR dispatch problem [7]-[12]. These evolutionary
mechanism has been used to select a compromise solution fromalgorithms are proved to be better than traditional method

the Pareto set. The proposed MOHS algorithm has been tested on . . . . L
IEEE 30 bus system with different objectives. Simulation results because of their ability to obtain a Pareto optimal solution in

clearly show that the proposed method is able to generate true & singlg run. Since evolutior!ary algorithms use a_popul_ation
and well distributed Pareto optimal solutions for OPF problem.  of solutions, they can be easily extended to maintain a diverse

set of solutions in a single run. Most evolutionary algorithms
reported for EED, OPF and VAR problems, use non dominated
In real world optimization problems, multiple competingsorting , strength Pareto approach for maintaining a diverse
objectives make us solve them simultaneously instead Péreto optimal solutions. This paper considers the non domi-
solving them separately. This gives rise to a set of optimahted sorting and crowding distance method proposed by Deb
solution (Largely known as Pareto optimal solution) rathg13] to maintain a well distributed Pareto optimal solutions.

than a single optimal solution. In the absence of a knowledge,|_|arrnony search (HS) algorithm has been recently devel-
it is not possible to find a better solution than others from ”B-’ped [14] in an analogy with improvisation process where
Pareto optimal solutions [1]. Because, one can not be befigfisicians always try to polish their pitches to obtain a
than other without any further information. Therefore, it igetter harmony. Music improvisation process is similar to the
necessary to find as many Pareto optimal solutions as possiBlgimum design process which seeks to find optimum solution.
Classical methods do convert the multi objective optimizatiofhe pitch of each musical instrument determines the certain
problem to a single objective optimization problem by guajity of harmony, just like the objective function assigned
suitable scaling/weighting factor method. This results in @ the set of variables. In this paper, HS algorithm is extended
single optimal solution. To obtain a Pareto optimal solutiongsing fast non dominated sorting and ranking procedure to find
it should be run as many times as the number of solutionsg pareto optimal solutions for OPF problem with competing
OPF problem is a nonlinear, constrained optimization propjectives. Finally a fuzzy based mechanism is used to find
lem where many competing objectives are present. Traditiogicompromise solution from the Pareto optimal solution. This
ally, OPF problem has been solved for different objectives Afultiobjective harmony search (MOHS) algorithm has been
a single objective optimization problem [2]-[5]. This resultegested on a standard IEEE 30 bus test system for competing
in a optimal solution which satisfies one objective and n@fjectives. Simulation results clearly show the robustness

others. Therefore, to satisfy and find a compromise solutigf the MOHS method to obtain a well distributed optimal
between two competing objectives, OPF problem is solved ag@tions.

multiobjective optimization problem with different constraints.

Traditionally, multiobjective OPF problem has been solved
by weighted sum and-constraint method [6]. The weighted Il. PROBLEM FORMULATION
sum method converts multiobjective optimization problem to
a single objective optimization problem by giving suitable The OPF problem is a non linear, non convex optimization
weights to the objectives. Whereasconstraint method treats problem which determines the optimal control variables for
most preferred objectives for optimization and non preferredinimizing the certain objectives subject to the several equal-
objective as a constraint in the allowable rargf his range ity and inequality constraints. The OPF problem is generally
is further modified to obtain a Pareto optimal solution. Thedermulated as follows.

I. INTRODUCTION
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A. Objective functions 2) Transformer constraints: Transformer tap settings are

1) Fuel cost minimization: This objective is to minimize restricted by their minimum and maximum limits as
the total fuel costFr of the system. The fuel cost curves of follows:
the thermal generators are modeled as a quadratic cost curve

and can be represented as LPeL=T7, i=1,,nt ©)
Ng 3) Shunt VAR constraints: Reactive power injections at
Fr = Z(ain +biP;+¢;) $/hr (1) buses are restricted by their minimum and maximum
i=1 limits as:
wherea,, b;, ¢; are the fuel cost coefficients of thth gener- min max
ator, P; is real power output of théth generator andVg is Qe < Qei < Q™ L., ne (10)

the total number of generators in the system.

2) Real power loss. This objective is to minimize the real
power transmission line losséy, in the system which can be
expressed as follows.

nl ViR <V S VRS j=1,--- Npg (11)
Pp =" gelVP + V7 —2ViVjcos(di —6;)]  (2)
k=1 S <SP, i=1,---,nl (12)
whereg;, is the conductance of a transmission lineonnected
betweeni and jth bus,nl is the total number of transmission
lines, V;, V;, 6; andé; are the voltage magnitudes and phase Many real world optimization problem involve simultaneous
angles ofi and jth bus respectively. optimization of several conflicting objectives. Multiobjective

3) L-Index: This objective is to maintain the voltage stabiloptimization problems with such conflicting objectives give
ity and move the system far away from the voltage collapsige to a set of optimal solution, rather than a single optimal
point. This can be achieved by minimizing the voltage stabilityolution. Because, no solution can be considered to be better

4) Security constraints: These include the constraints of
voltage magnitudes at load buses and transmission line
loadings as follows:

IIl. M ULTIOBJECTIVE OPTIMIZATION

indicator L-index [15], [16]and can be expresses as than other solutions with out a information. These set of
Lonae = max{Lp, k = 1,2, ,nl} 3) optimal solutlons.aret\ ca_lled as a_Pareto optimal solut|_0ns.
A general multiobjective optimization problem consists of
B. Constraints multiple objectives to be optimized simultaneously and the var-
1) Equality constraints: These constraints are typical loadous equality and inequality constraints. This can be generally

flow equations which can be described as follows formulated as

Mg Min f;(z), i=1,2,---,N 13
Po;—Pp;—V; ZVJ(G” coSs 5ij+Bij sin 513) =0 7€ NPQ f ( ) ( )

j=1

@ (x)=0, j=1,2 M
B : . g;(r) =1V, J=L2,-,

Qaci—Qpi—Vi ZVJ(GZ-J- sin &;;—B;j cos 6;;) =0 i € Ng Subject to : { hjk(x) <0, k=1,2,---,K (14)

j=1
) _ (~"__>) where f; is theith objective functionyx is a decision vector
where Fg; is the real power generation &@h bus, Pp; is that represents a solutiody is the number of objective

the real power demand ath bus,Qg:; is the reactive power functions,M and K are the number of equality and inequality
generation aith bus,Q p; is the reactive power demandi#it  constraints respectively.

bus, B;; is the suceptance of the line connected betwemd  For a mutliobjective optimization problem, any two solu-

jth bus, N is the total number of busedirq is the number tions z; and z, can have any one of two possibilities, one
of load buses and/¢; is the number of generator buses in thgominates other or none dominates other. In a minimization

system. problem, with out loss of generality, solutian dominatese,
2) Inequality constraints. These constraints represent thg the following conditions are satisfied.

system operating limits as follows

1) Generation constraints: Generator voltages, real power 1. Vi€ {1,2,--- N} fi(z1) < fi(22) (15)
outputs and reactive power outputs are restricted by their 2. Jj € {1,2,--- N} : f;(z1) < fj(z2) (16)
lower and upper bounds as follows:

If any one of the above conditions is violated, then the solution

Vei' <Vai < V@™, i=1,---,Ng (6) x1 does not dominates,. If 1 dominates the solution,, x;

Pmin < po. < PBaX i —1 ... Ng (7) s called as the non dominated solution. The solutions that are
non dominated within the entire search space are denoted as
min max . . .
Qai" < Qci < Qg™ i=1,---,Ng (8) Pareto optimal solutions.
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IV. HARMONY SEARCH ALGORITHM maximum limits.
The harmony search (HS) algorithm, proposed by Geem xi zy o zh, ok
[.14], isa nqture inspired algorithm, mlmlcklng _the improvisa- x? x3 e @k z3
tion of music players. The harmony in music is analogous toy 5, — : : : : : (17)
the_ optimization solution vector, and the musician’s improvi- _ xHM:S*l ms—1 xHM:S*l —
sations are analogous to the local and global search schemes in L oms 2 s Nt Novs
] T2 o IN-1 PN

optimization techniques. The HS algorithm uses a stochastic
random search, instead of a gradient search. This algoritian
uses harmony memory considering rate and pitch adjustment
rate for finding the solution vector in the search space. A new harmony vectotX’ = (x}, 25, -+ , 2y ) is generated
The HS algorithm uses the concept, how aesthetic estinteased on three rules: 1) memory consideration, 2) pitch ad-
tion helps to find the perfect state of harmony, to determine thestment and 3) random selection. Generating a new harmony
optimum value of the objective function. The HS algorithm i called as improvisation.
simple in concept, few in parameters and easy in implementain the memory consideration, the value of decision variables
tion. It has been successfully applied to various optimization’ for the new vector are selected frof! — ™). The
problems. The optimization procedure of the HS algorithm igarmony memory considering rate (HMCR), which varies

Improvisation of a new harmony from the HM

as follows: between 0 and 1, is the rate of choosing one value from the
1) Initialize the optimization problem and algorithm parambistorical values stored in HM, while (1-HMCR) is the rate
eters. of randomly selecting one value from the possible range of
2) Initialize the harmony memory. values as
3) Improvise a new harmony memory. , 1 9 HMSY -
4) Update the harmony memory. Ty = { m s teg, .-} 4f rand SHMCR (18)
. L . . e X; Otherwise
5) Check for stopping criteria. Otherwise, repeat step 3 to g
4. where rand is the uniform random number in the range

The detailed description of the above steps are given lietween 0 and 1 and’; the set of possible range of values
[17]-[19] and the brief explanation is given in the followingor each decision variable, that is nin < X; < ; pax-

sections. For example, a HMCR of 0.8 indicates that the HS al-
gorithm will choose the decision variable from historically
A. Initialization of problem and HS algorithm parameters stored values in the HM with an 80% probability or from

the possible range of values with a 20% probability. After

In this step, the optimization problem is specified as foIIow?1 . . . .
the memory consideration, every component is examined to

Min f(z) determine whether it should be pitch adjusted. This operation
uses the PAR parameter, which is the rate of pitch adjustment
subject to as follows;
g(z) =0 o { 2} +rand X BW if rand < PAR (19)
i / i
Tk,min <z < Tk, max k= 17 2a e aN T Otherwise

whereBVW is the arbitrary distance bandwidth.
To improve the performance of the HS algorithm, PAR and
BW are changed during each generation as follows;

where f(z) is the objective functiong(z) is the equality

constraint,z is the set of decision variable$,;, ,Tn.x are

minimum and maximum limits of decision variables aNdis

the number of decision variables. The HS algorithm parameter PARy., — PARy;,

are also specified in this step. These are the harmony memory PAR(g) = PARqpin + — X g (20)

size (HMS) or the number of solution vectors in the harmony

memory, harmony memory considering rate (HMCR), pitcwherePAR(g) is the pitch adjusting rate of current generation,

adjustment rate (PAR), bandwidth rate (BW) and the numbRkRyin is the minimum pitch adjusting rat@ARy. is the

of improvisations (NI) or the stopping condition. maximum pitch adjusting ratey is the current generation
number andiI is the number of improvisations.

B. Initialization of harmony memor
Y memory Ln (B )

P g) 21)

The harmony memory (HM) is a memory location where BW(g) = BWnaxexp(
all the solution vectors (sets of decision variables) are stored.
The HM is similar to the number of population in othewhereBW(g) is the bandwidth rate of current generatidiy;,
evolutionary algorithms. The HM matrix (17) is filled with asis the minimum bandwidth rate argl,., is the maximum

many randomly generated values between its minimum abhdndwidth rate.
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D. Updating the harmony memory

V.

707

IMPLEMENTATION OF THE PROPOSEDAPPROACH

Updating the harmony memory in HS algorithm for multi- The proposed approach to solve OPF problem is described
objective optimization problem differs from that of basic H" the following steps.

algorithm. In this work, non dominated sorting and ranking 1)
scheme, proposed by Deb is used to find the Pareto optimal
solutions. The new harmony memory, generated by improvisa-=2)
tion process, is combined with the existing harmony memory
to form 2 x HMS solution vectors. Then non dominated
sorting and ranking procedure is performed on the combined3)
harmony memory. Once the ranking is assigned to all the
solution vectors in the combined harmony memory, a diversity
rank is assigned to the solution vectors, which are in the samet)
non dominated front, using the crowding distance metric. The5)
crowding distance is an indication of the density of the solution
vectors surrounding a particular solution vector. The measureb)
of crowding distance is generally based on the average distance
of the two solution vectors on either side of a solution vector, 7)
along each of the objectives. Finally, the b&sd/ S harmony
memory is selected from the combined harmony memory in8)
the order of their ranking for the next improvisation. To choose
exactly HM S solution vectors from the last non dominated
front, crowded comparison operator is used to select the bes®)
solutions needed to fill thé/ M S.

E. Stopping condition 10)

The HS algorithm is stopped when the number of improvi-
sations (NI) has been met. Otherwise sections IV-C and v-g-1)
are repeated.

F. Best compromise solution

Input the system parameters, minimum and maximum
limits of control variables.

Choose the harmony memory siZéM S, pitch ad-
justing rate PAR, bandwidth BW and the maximum
number of improvisationgv[.

Initialize the harmony memor¥ M as explained in the
section 1V-B. While initializing, all the control variables
are randomly generated with in their limits.

Start the improvisation.

For each solution vector iff M, evaluate the objective
functions.

Improvise the new harmony memory as explained in the
section IV-C.

Perform the non dominated sorting and ranking on the
combined existing and new harmony memory.

Choose the best harmony memory from the combined
solution vectors as given in the section IV-D for the next
improvisation.

Check for stopping conditions. If the number of impro-
visations has been reached to the maximum, go to next
step. Otherwise, go to step 5.

The non dominated solution vectors in tth&M are
Pareto optimal solutions.

Best compromise solution vector is taken from the
Pareto optimal set using fuzzy membership approach.

V1. SIMULATION RESULTS

) . . ) In order to validate the robustness of the proposed MOHS
Having obtained the Pareto optimal set, choosing a bggkthod, a standard IEEE 30 bus system has been considered.
compromise solution is important in decision making procesgp;s system consists of 6 generators at buses 1, 2, 5, 8, 11 and
In this paper, fuzzy membership approach is used to find a bgst 4 transformers with off-nominal tap ratio in the lines 6-9,

compromise solution. Due to imprecise nature of the decisigt g 4-12 and 27-28 and reactive power injection at the buses

maker’s judgment théth objective functionf; of individual k
is represented by a membership functighdefined as

10, 12, 15, 17, 20, 21, 23, 24 and 29. The complete system
data with minimum and maximum limits of control variables

1 fi < fm
k_ M fmin o f o fmax 22
Mz flmdx _ fzmm 7 T (2 ( )
0 fi = [

are given in [2]. The network diagram of IEEE 30 bus system
is shown in Fig 1. In this paper, three objectives, namely, fuel
cost , losses and L-index have been considered.

Before MOHS is applied to OPF problem, following pa-
rameters need to be defined. They are, harmony memory size

where £ and f#* are the minimum and maximum valueH M S = 50, harmony memory considering raleM CR =

of ith objective function among all non dominated solution$).85, pitch adjusting raté’ AR ,;;, = 0.2 andPAR . =

respectively.

For each non dominated solutidn the normalized mem-

bership functiory:” is calculated as

N
M.
i=1

k

pr = (23)

k
K2
k
i
i=1

2!
bandwidthBW ,;, = 0.45 andBW,.x = 0.9 and the number
of improvisationsNI = 500.

A. Case 1: Fuel cost Vs Losses

In this case, two competing objectives, i.e., fuel cost
and losses, were considered. This multiobjective optimization
problem was solved by the proposed approach. The Pareto
optimal solution obtained using the proposed MOHS algorithm
is shown in Fig. 2. From the Pareto optimal solution, it is clear

where P is the total number of non dominated solutions. Thihat the proposed MOHS method is giving well distributed
best compromise solution is that having maximum value gblutions. The compromise solution was found using the fuzzy

p.

membership approach. The best solution vectors for minimum
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TABLE |
OPTIMAL SOLUTION FOR CASE 1
Variables Best Cost| Best Losses| Best Compromise
Pg1 MW 161.2088 84.6404 124.1938
Pgo MW 54.7416 52.3695 50.6518
Pgs MW 22.8866 47.9821 32.4311
Pgs MW 18.1654 34.6415 34.6415
Pg11 MW 13.9513 29.0215 26.6144
Pg13 MW 20.3588 38.1759 20.0232
Vi (p.u) 1.0939 1.0914 1.0980
Va (p.u) 1.0820 1.0798 1.0826
Vs (p.u) 1.0555 1.0555 1.0555
Vs (p.u) 1.0661 1.0661 1.0661
Vi1 (p.u) 1.0958 1.0958 1.0946
Vis (p.u) 1.0949 1.0949 1.0997
Te—9 1.0724 0.9628 0.9775
T6—10 0.9181 1.0392 0.9647
Ti—12 0.9818 0.9818 0.9885
Tog_27 0.9699 0.9699 0.9709
Qe10 (p.U) 0.0137 0.0493 0.0288
Qe12 (p.U) 0.0344 0.0280 0.0497
Qe15 (p.u) 0.0347 0.0413 0.0474
Qe17 (p.U) 0.0367 0.0476 0.0365
Fig. 1. Single Line Diagram of IEEE 30 Bus Test System Qe20 (p-U) 0.0459 0.0422 0.0484
Qe21 (p.U) 0.0485 0.0465 0.0470
Q23 (p.u) 0.0383 0.0360 0.0425
8% Qe24 (p-U) 0.0447 0.0119 0.0411
* Qe29 (p.U) 0.0430 0.0267 0.0355
757 Fuel cost$/hr 803.6838 909.3377 828.1713
7+t %e - Loss 7.9123 3.5258 5.2701
N 65} * 1
|
§ 61 *%gg 1 0.118
2 55l 1 *
2 0.116 4
| 5 L
asl Wﬂsk 0114
4t *% 3 0112}
* Horr = *
35 : : : : =% ! *
800 820 840 860 880 900 920 a 0a1¢ e
Cost $/hr——> %&
0.108 |
Fig. 2. Pareto Optimal Solutions For Case 1
0.106 |
cost, minimum loss and the compromise solution are given (194 . . . .
Table |. 799.5 800 800.5 801 801.5 802
Cost $/hr

B. Case 2: Fuel cost Vs L-index

In this case, L-index is considered in place of transmission Fig. 3. Pareto Optimal Solutions For Case 2
losses. L-index gives a scalar number to each load bus This
index uses information on a normal power flow and is in
the range zero (no load case) to one (voltage collapse). flmctions were optimized by the proposed MOHS method.
maintain the voltage stability and move away from voltagéhe Pareto optimal solution for this case is shown in Fig. 3.
collapse point, maximum value of L-index among load busd$e best solution vectors are also given for minimum cost,
L.« must be minimized. These two competing objectiveninimum L-index and compromise case in Table Il
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TABLE 1l
OPTIMAL SOLUTION FOR CASE 2 (6]
Variables Best Cost| Best L-Index | Best Compromise 7]
Pc1 (MW) 176.4070 | 177.6569 176.4756
Pgo (MW) 48.1795 48.1795 48.1795
Pgs (MW) 21.9466 21.9466 21.9466 (8]
Pas (MW) 21.3504 20.2148 21.3504
Parr (MW) 11.7238 11.6816 11.7238 [
Pcis (MW) 12.4769 13.0176 12.4769
Vi (p.u) 1.0999 1.0999 1.0999 [10]
Vs (p.u) 1.0949 1.0976 1.0949
Vs (p.u) 1.0767 1.0959 1.0767 a1
Vs (p.U) 1.0840 1.0995 1.0840
Vi1 (p.u) 1.0985 1.0985 1.0990
113 (p.u) 1.0996 1.0996 1.0996 [12]
Te—9 0.9022 0.9022 0.9400
T6—-10 1.0718 0.9007 0.9007 [13]
Ti—12 1.0156 0.9010 0.9213
Tog_27 0.9690 0.9157 0.9327 [14]
Qe10 (p.u) 0.0490 0.0490 0.0490
Qc12 (p.U) 0.0495 0.0495 0.0495 [15]
Qe15 (p.u) 0.0478 0.0478 0.0488
Q17 (p.u) 0.0363 0.0478 0.0478 [16]
Q20 (p.U) 0.0054 0.0493 0.0500
Qe21 (p.u) 0.0497 0.0497 0.0456 171
Q23 (p.u) 0.0467 0.0467 0.0490
Q24 (p.U) 0.0496 0.0496 0.0496
Q20 (p.U) 0.0460 0.0483 0.0483
Fuel Cost $/hr| 799.6217 801.5094 799.8494 [18]
L-Index 0.1166 0.1049 0.1087
[19]

VII. CONCLUSIONS

In this paper, different multi-objectives for OPF problem
were formed. These multi-objectives have been solved by
the proposed MOHS algorithm. Non-dominated sorting and
ranking with crowded comparison operator were used to
find and maintain the Pareto optimal solutions. Finally, a
fuzzy membership approach has been used to identify the
best compromise solution. From the simulation results, the
proposed MOHS method is able to give well distributed Pareto
optimal solutions for OPF problem with different objectives.
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