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Semiconductors-, computation-, and more broadly information-centered pursuit is now pervasive in our
society. It powers and drives the society through the commerce and the social schema in the `̀ medium is
the message.´́ Labor almost appears as a secondary afterthought and a Marxist anachronism. This enter-
prise as an engine has hybridized with economics, defense, class, culture, power and religion.

These essays, technical and societal, are views that crystallized during the past decade as I took a step
back and pursued ideas and interests as an individual rather than for the affinity group as we all are wont
to do carried on in the flow of life. They are written with those technically inclined in mind. The students
of Indian Institute of Technology (IIT) were the audience when I articulated these ideas in the Kanpur
lectures of 2023. While at times they may become sufficiently mathematical that a general reader may
not absorb the analytics of the argument it is my hope that the flow of ideas being conveyed will still be
digestible.

Starting with a discussion of education, particularly higher education, the sequence explores some of
the major questions and challenges of the current state—technical and worldly—with my guesses for the
future. The initial three are a technical perspective viewed through my experiences. They discuss, by view-
ing complexity in electronics as a mix of determinism and uncertainty, the questions arising in the giant
integration scales now possible, the indeterministic view of the world of open boundaries, and of compu-
tation for the complex and incomplete problems that can now be tackled through machine learning and
neural networks. The latter is an entirely new way of tackling complex problems that I did not have in my
formative years.

The last two essays follow through from a very personal frame of reference, my mind’s eye and I, cul-
tural and humanist lessons of the circumscribed science and engineering pursuits in a real world with its
open boundaries. It is a quest of learning and of change in a dynamic world. I end with thoughts probing
the future in which semiconductors—an early research love—as an essential physical layer for nearly every
economic pursuit and a critical national pursuit for my birth country.
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Mari and I spent the spring of 2023 at IIT Kanpur. For me it was a
pilgrimage, my calf-grund, and a chance to relive a formative period,
perhaps a hiraeth, but this time watching a vibrant new world of The past of all cultures has distilled

essentials of human condition to pithy
phrases. Calf-grund is an old Scots
expression describing a territory on
which one was calved and whose
imprint remains, no matter where one
goes later. Hiraeth is a Welsh word for
nostalgia and homesickness for a place
that no longer exists. My maternal
grandmother would say to me in
Bundelkhandi `̀ Gam khao,´́ literally `̀ Eat
sorrow,´́ and meaning calm down and
take it slowly. I am still working on this
instruction from the summers of my
childhood.

young self-confident humans, bicycles everywhere on a more diverse
campus, and the nature’s cycle.

The waves of new winter flowers, the bougainvilleas cascading
in shades of pinks, reds, oranges, yellows and whites, the flowering
trees, specially the Gulmohars and Alamtas, have been a feast. So
also the cacophony of numerous species of birds that love this oasis
in the Gangetic planes. I made new friends: Uday jee and Pawan
jee, guards at the Director’s house, who also took care of family
rabbits, earning away from their family in their villages, Khemji,
from Nepal terai and now settled with family in Nankari, Kush-
waha bhai, who explained to me how to get Cinerarias to germinate,
grow and bloom, and Sanjaya jee, who may be a cleaner despite hav-
ing a bachelor’s degree in economics but committed to getting the
best education for his children. The teaching let me put together the
first draft and practice the remaining volume of the Oxford Electro-
science series placing information at the center of statistical, quan-
tum and computational mechanics. Also lighting a few fires in the
young minds and warding away higher-order illiteracies. The stu-
dents across the spectrum of disciplines and years-in-school made the
writing of the Python journal files and organizing and sequencing the
information-centric arguments a pleasure. Also by probing through
the questions in the evening talks.

The writing here come from the five talks of the Kanpur lectures
series. This series let me place recent research work within the con- The talks can be accessed at

www.iitk.ac.in/scdt/Sandip_Tiwari_ 
Kanpur_Lectures.html web location.

text of life learning and share broader thoughts in the last two by
expanding to the social context, and the societal-technical entangle-
ment of development through science and technology.

The essay on interdisciplinarity and cultures of science and hu-
manities is in honor of Prof. K. R. Sarma, who was present, and who
was my advisor in 1975–76 in the life-instructive design project.

After a personal view on education as a preamble, the initial es-
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says are technical. The first sets the vast integration of semiconduc-
tors in thermodynamic context. The next two expand to the inter-
section of complexity and machine learning. We now have a very
powerful new tool that is opening a vast new science and engineering
territory to exploration by the young and keen mind.

One’s writing is reflective of emotional, moral and analytic gravity.
All that one imagines, thinks, infers, and writes must change with
time as one learns. This is what makes life worth living where im-
mutable answers need not exist. We are only participants in state
changes under cause and chance. Since I am venturing personal
opinions at times, some discussions here will provoke nodding and
some will cause indignation. Understanding comes from hearing and
amicably resolving these different points of view.

In 1971 I had arrived to pursue physics in its inaugural integrated
program but also had an engineering vein. IIT and the rest of life
has allowed me to inhabit both these worlds. Lest one thinks there
are hard boundaries it was corrected in the very first year when we
had to write an essay in our humanities class on some philosophi-
cal thinking theme of our choice. I have always been interested in
Buddha’s teachings, in non violence and satyagraha as working prin-
ciples of life, and in suffering and its resolution. I quickly hit my
articulation limits as I put pen to paper. So I wrote to my father.
When the submitted essay was returned, Ms. Chitra Ray, our tutor,
had circled a part in red with a note, paraphrased here after fifty+
years, `̀ This is from the heart. Where is the rest from?´́ Bless her. The
circled part was my father. This cathartic event opened a door for
me. Thinking is not definitive and complete—in as much as it can
be—until one has argued it out on paper for archiving.

Who would have thought that atheists can have a pilgrimage just
as satisfying as the Amarnath yatra or Sabarimala trek or Mecca or
the Camino de Santiago? Being at IIT was transformational, then and
now. The 1971–76 period was of nonlinear learning and of lessons
such as of the incompleteness of ontological and epistemic boxes.
The 2023 period helped me pull some of this unfinished business into
an information-centered perspective. It was rejuvenating.

This was all made possible by the Institute hosting us, the love and
the effort that Prof. Sundar Iyer, Mr. Dharmendra Swain and Prof. R.
Vijaya put into all that makes life work out. The memory of 2023 will
always bring a smile of sharing this afterimage, of the new friends
made, of the changes one can see in a dynamic India, and of being
still-a-student after having survived so far all the complexity that
existence throws at one in life.

Sandip Tiwari, Kanpur, May, 2023
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1
Preamble: On education

We are born accidentally. We do not choose the family, the environment,

whether rich or poor or powerful or not. We just materialize, are sheltered

in early years, are sent off to schools, meet and are influenced by individuals

and groups, and we are expected to channel a course through the world.

Nothing is quite free will here, a lot of it is a product of the environment,

but we can and do clear a path for ourselves building up from the circum-

stances with personal propensity. Education builds the path and provides the

means to personal fulfillment. It begins at home, is extended and expanded

through schooling and settles itself as an evolving track in the vicissitudes of

the real world. The mechanisms of education have changed over history. This

is particularly true since the dawn of modern science. The traditional liberal

arts have been supplanted, sometimes gradually and sometimes rapidly, by

modern sciences and those of the engineering, medicine, management and

other professions that support living. It is therefore not surprising that much

tension exists in what education is about, what education should be, and

how the society should pursue this aspiration for every human and to what

extent. This preamble is of thoughts from a sentimental and sometimes acci-

dental wanderer in this spectrum. Some of these are bequeathed by history

and some are from observations of a life spent in science and engineering in

an east-west emerging-developed world.

In times past—hundreds of years and beyond—education hap-
pened at home and by living in the world that surrounded us. Insti-
tutionalized education of the masses—early schools through colleges
or universities or institutes of various nomenclatures and pedigrees—
is largely a modern phenomena, and a change that has been an in-
credible enhancement for human development and in the life of a
human being.

This transformation also causes a clash of the old and the new that
reverberates constantly, within us, within families, within institutions,
and within all of the different configurations in the society.

Science and engineering in the world
© Sandip Tiwari, (2023)



2 engineering & science & in our world: this i believe.

1.1 Education: Childhood, studenthood and life

What is education? What are its goals? What is the best way of at-
tempting these objectives via schooling and what should the school-
ing emphasize to achieve the goals at the various stages given what
we understand of child and adult development? How far must
one go in schooling? How does one separate indoctrination from
free thought? How is one free given all the pressures of needs and
powers? And so on and on. These and others are diverse questions
rooted in the past and of the needs of the future. On one side is a
conveyed tradition and on the other is the great unknown that the
education to the young ones is for.

No wonder that there is much conflict and debate and social and
systemic wars no matter where one resides in the world and the
terroir of that environment. The struggle is integral to being human.

Historically, education was artes liberales. In the ashrams, domi-
nantly for the children of the aristocracy, it was for developing an
understanding of traditions, developing capabilities of reasoning
for making small and large decisions, and also to build capacity
for war. In the Greek tradition it was the learning for a free per-
son. The original Greek form of education concentrating on theol-
ogy, law, medicine and philosophy that folded in natural sciences is
not that different from the Indian tradition. It too was for the rul-
ing class—the `̀ free´́ —and not for population at large—slaves or
slave-like folks—an indentured laborer in the British euphamism, for
example—regardless of what we call them in different parts of the
ancient world.

In the middle of this millennium, the classical education began
being complemented by scientiae lucrativae, an education for material
gain.

In the West, in the institutions of learning, the earliest of the
changes in the 16th century were in the faculty of arts turning into
the faculty of philosophy. The new sciences—chemistry (originally
alchemy) and botany particularly as tied to medicine—brought in
the empirical and rational way of exploration that did not depend
entirely on bias-constrained mental arguments and discussions of
old times. This is the start of the early conflicts between old and new
sciences, the old having traditionally been folded into philosophy.

Liberal arts had its emphasis mainly on classics—Ramayana or
Mahabharata or Republic or The Iliad—and classic traditions, where
thoughts and discussions of human proclivities were employed for
education.

Is this liberal tradition merely ornamental and are lucrative sci-
ences mainly utilitarian? Is this just a duel between mental delights
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and material goods?
I do not think so.
Over time, it is the amalgamation of the liberal approach and the

scientific approach that became the enlightenment: an interaction of
ideas and social reality or superficially of reason and rationality.

With the introduction of scientific method of observation—empi-
ricism—drawing on the work of Francis Bacon and John Locke, and
others, the amalgamated enlightenment happened in the mid-1600s
with Rene Descartes’ musings on logic and method—Cogito, ergo
sum. I think, therefore I am.—and in India, with Raja Rammohun Roy’s

I think, therefore I am is an incredibly
Gödelian self-conflicted statement. Is
it provable or not provable? The brain,
our understanding of neurosciences,
the processes of complexity have
much to do with the logic and method
argument. Antonio Damasio’s Descartes’
error, Penguin, ISBN 0-399-13894-3
(1994) is an incredible discussion—
now dated because of the progress
in neurosciences—of emotion and
reason. Does a person who loses
cognition cease to exist? A more recent
writing is R. Sapolsky, Behave. The
biology of humans at our best and worst,
Penguin, ISBN 978-1-59420-507-1 (2017)
discussing the reward system of frontal
cortex determining how we respond
to situations. Does free will exist? It
cannot. It is not that long before we
will be manipulating the brain through
neural approaches. Planting memories
and controlling behavior is a time-
honored warfare and popular-fiction
book technique. The myth building by
which societies and often institutions
operate does pretty well with this
controlling.

Brahmo Samaj in early 1800s—Truth and virtue do not necessarily belong
to wealth and power and distinctions of big mansions..

As we learn more, we are educated more, and we evolve how
we see the past and project to the future. This is enlightenment. As
an example, Descartes’ reasoning of rational methods now need
a thorough questioning in light of what we now know about the
human brain.

This evolution—hundreds of year in making— is an overthrow
of the long period of purely mental exercises such as of Aristotle or

Aristotle’s failure is best embodied in
the claim that heaver objects fall faster
as being a pure mental exercise. It took
the famous Tower of Pisa experiment to
dislodge that heresy.

of Plato and Ptolemy or of the Indian rishis, even if there is much

It is the breakdown of symmetries that
underlies our existence and heterogene-
ity. Symmetry is a Platonic ideal, and
geocentrism—earth as the center of
universe—is ascribed to Ptolemy. Plato
is to be befriended. Plato’s Republic is
education, then and now. Plato, when
disagreeing with Aristotle on the nature
of good, was still underscoring the
society of the mind. The world is nei-
ther ideal nor is there anything unique
about the planet or us. Ramsey’s 1920
combinatorics theorem tells us that
there exists a quantifiable minimum-
sized collection for one to find any
specific set of relationships. The self-
centered notion of our uniqueness and
not knowing of intelligent life beyond
the earth is a problem of spacetime. It
most likely exists, somewhere, since the
universe is immense, and it did in the
past too, but can it reach us under con-
straints of Einstein’s general relativity
and of thermodynamics of matter?

in classics of Greece and of India or of China to be revered and ad-
mired.

This supplanting—perhaps today an overpowering and not just
complementing—forced education, and places for education to
change.

Without sciences and engineering and physiology, we cannot build
a new world, but without literature—ancient and modern—and
music, dance, and arts, is the new world worthwhile?

Liberal education with its goal of human completeness, the teacher
backing the nature of the students, nurturing their hunger and their
capacity, and reinforcing keeps the building up alive. This is how
generations progress and tackle the permanent concerns of mankind.
Specially so since tastes change, what angers one changes, and what
one does is affected by `̀ the medium is the message.´́ Liberal educa-
tion gives one the tools to deal with the problems of the world one
has to inevitably deal with once we leave parental security. Science
and engineering and others give us the vocational and even free-
spirit means for making a living and exploring our living. They need
to coexist for the society to function.

This brings us to the question of enlightenment. What is en-
lighenment? It is the shining of light on darkness, the replacing of
opinions—superstitions—by scientific knowledge of nature. Start
from a phenomenon that can be seen by all and end with some ratio-
nal demonstrative conclusion that can also be seen by all.
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Enlightenment is a free pursuit unconstrained by punishments
from the society to explore reason, cause and effect. This is intellec-
tually honing. With the German philosophical traditions standing
tall, the enlightenment broadened empirical and rational inquiry
from that of Locke, Bacon, Descartes and others of that 17th century
period, to all disciplines, old and new.

Sciences, with their worldly emphasis, kept expanding. The inven-
tion of engines converting energy in various forms through various
carriers—human, steam, electric, combustion, nuclear, solar—of elec-
tricity as a convenient means to transportation of energy so that the
society did not need to stay confined at energy sources and water
bodies alone, the understanding of matter, of sickness and of nature
have transformed the society and how we interact and what we pur-
sue. This happened through the developments of science and its use
that blossomed into the large area of engineering. Science remains
more abstract and engineering more applied, and together they have
transformed the society. This is what makes science and engineering a
societal force on par with all the others that make being human worth-
while.

We arrived at this seeming bifurcation over the past five hundred
years as Indian, Chinese, Greek, Latin or Middle Eastern heirlooms
gave way to new knowledge that furthered the material and non-
material living.

This then brings up the debates and discussions of the age old
question of what it means to be enlightened, rational, or human. We
need a contemporary interpretation and on how one should pursue
that course, and in turn with the use of the science and engineering,
progress the society along a humanist path. At its foundation, this
is the pursuit of truth, ephemeral as it may be, work towards human
completeness, keep the natural world alive and progressing through
local and global reach. On one side are the big questions, of reason
versus revelation, of freedom versus necessity, of democracy versus
plutocracy or aristocracy, of good versus evil, of body versus soul,
of soul versus other, of together versus individual, of eternity versus
present, or of being versus nothing and on the other side is the real
world position and flow in adaptation and survival.

This is an idealistic view. This is not how society practices it. The
second dominates since survival, wealth creation, and upliftment of
poor is how the societal systems are organized, whether democracy,
plutocracy, authoritarian, monarchy or communist.

In the ideal view the role of precollege schooling is the devel-
opment of the child—standing up on all ten, learning the past and
developing an understanding and consideration of others and the
nature—and preparing for an adulthood and membership of the so-
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ciety through an all round development—of integrity, accountability,
and leading a life in the light. The precollege education across the
different directions of knowledge aim towards this so that the child
can make a learned choice of how they wish to pursue their place
in the world. This happens aligned with the maturation of the mind
while the body is undergoing hormone and chemical changes that
are the major stimuli of the teenage period. At the end of the high
schooling, the young person could be going directly to work and
learning on the job, or get a vocational education, or go on to higher
education at the academe.

We sometimes refer to one part of this development—related to
the person in the society—as values. Values are however only the
products of people’s minds and have relevance only to those minds.
They change with time. Nietzsche, in late 19th century, for example,
says that humans are losing capacity to value and therefore human-
ity. We have to be sympathetic to this view as the world wars hap-
pened within a few decades. He viewed self-satisfaction—the feeling
of being adjusted and a comfort in having solved one’s problems—as
a sign of incapacity to look up to perfection and the overcoming of
oneself. Nietzsche also saw problems with how the word is used.
Authentic values create culture. Religions’ teachings aim towards
this. But, if they are not rational and in the nature of that community,
then it is being imposed. So any opposite values must be subjugated.
Rational persuasion cannot make anybody a believer since values
and believing in them are acts of the will. It therefore turns into a
problem of lack of will. A value as a value is life preserving and life
enhancing. These are all conditionals, and if one depended entirely
on schools—teachers and cohort—and family for development, it
cannot really succeed too well.

This leads to culture in the discussion of development. Culture as
art is a supreme expression of human’s creativity and of the capacity
to break out of nature’s narrow bond. It builds dignity. The culture
of a community is the fabric of relations in which the self exhibits a
diverse and elaborate expression. It comes from self and is also the
product. So it is a production and a product. In this sense, like value,
culture too is relativist. This is why wars, great cruelty instead of
compassion, is to Nietzsche a fundamental phenomena. We indulge
in it all the time, world wars just continue after an intermission as
right now (2023) in Europe and Middle East, and these cycles will
keep repeating. War is the fundamental phenomenon upon which
peace is sometimes forced. This is Nietzsche’s criticism that this is
civilized reanimalization.

A child needs going beyond the bounds placed in imagination,
creativity and aspirations. Creativity implies separating oneself from
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others in some unique way. This is contrary to rationalism or egal-
itarianism. Childhood is the perfect time for such dreaming to be
promoted for building uniqueness, which we later on attempt to cor-
ral. The soul’s longing in the midst of constraints and conditionals
needs encouragement from the very beginning. Books are central to
this transformation. Books—children’s books such as Black Beauty by
Anna Sewell, or the Peter Rabbit stories of Beatrix Potter, or the Panch-
tantra tales, or Idgah or Bade Bhai Saheb of Premchand, or Afeemchee of
Hazariprasad Dwivedi, so many others, are an outlet of encourage-
ment to the young child’s mind to let go off their local confines and
let it wander. Such a child then knows that the reciprocity of rights is
fundamental. There is no need of adherence to any religion or creed
or culture or ethnicity.

These early years are enormously important in human develop-
ment. Psychology studies tell us that the character comes from the
early preschool years. Character along with knowledge make for There are plenty of studies of large

cohorts that also tell us that childhood
trauma, desperation and violence have
a long arm stretching throughout life.
Only a few are lucky to overcome the
neural consequences. Wars, poverty,
ostracism in all forms continue to then
flow. This is a reason to best see a
society through the lens of how it treats
the child and the equality in education
that it provides to every child through
the age of 18. This is equal opportunity.
The current Germanic societies do this
exceptionally well.

education. Character is associated with vitality, courage, sensitivity,
intelligence, curiosity, and other similar traits. Vitality is a physio-
logical characteristic. If you watch people across the age spectrum
you will notice that it is the one characteristic that dwindles with
age. Courage is sometimes the absence of rational or irrational fear
and sometimes it is in the control of these fears. Sensitivity is affec-
tion and sympathy towards others. Sensitiveness is a modulation on
courage promoting affection and sympathy towards others. Intelli-
gence arises in alert curiosity. It is the genuine love for knowledge.

We are all born with the potential for all these traits and it is the
environment of the early formative years that establish them as life-
long habits. In the Chinese way of thinking—a Confucian–Taoist
view—logic and morals and wisdom of life are all one. This is an-
other way of looking at character. If the later life is in a supportive
environment, the desirable traits will continue to solidify and grow.
The traits also help knowledge acquisition part of education.

These early years of school education are also for taming raw
passions. But it is not to suppress or eliminate them. If one did that,
one is excising the energy that makes us us. It is a molding process.
This process is largely informed by the liberal arts. Later in life—
at the university and beyond—and this is the most difficult part,
one needs a harmonization of the enthusiastic parts of the soul with
that rational part that builds up later. As one ages, one feels more
and more incomplete the larger the disconnection is in between the In the later essays, I point to the corre-

spondence between this view and the
Kullback-Leibler divergence view in
information theory.

inner self—the internal aspirations not seen by the world—and the
outer self—the one molded and pushed by the society—that one
presents. A person can never be whole without this harmonization.
Music and poetry as another reasoned form of music, are a delicate
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balance of passion and reason, This is why love of music and arts
is so important to harmony in life. Even when music and arts turns
more edgy and tight, as also religion, which is both warlike and
erotic, the scales are generally tipped towards passion.

The ambitions get molded by the models experienced in the books
we read and we develop an inner feel for the yearnings of the heart. I
recall my early school years with my father bringing home the color-
ful magazines published by the American Embassy, one of which had
Martin Luther King and his I have a dream speech as the focus that is
still stuck in my head. I also received the free Soviet magazines (Sput-
nik) with collective farms of golden fields spread out to infinity and
giant harvesters doing the hard work. All glossy. The young mind is
so impressionable. Both of these were propaganda. Both fallacious
in that the dream is still unfulfilled and the farms didn’t quite work
out either. Yet, these are good examples of how real life is also part of
the education process. I could dream. I was still a mere preschooler
watching the Sputnik making its rounds in the night sky and me
riding it around in the universe. Later on, with Mir Publishers and
English Language Book Society supplying inexpensive books, Science
Today and Scientific American as the magazines, and popular science
books such as George Gamow’s One, two, three, infinity, and so many
others.

A university or the narrower college or institute education is the
place for what we have traditionally called higher education, a place
to go beyond the broader learning of the basics to enter the society.
They exist to mold students to become discoverers and doers who go
beyond being mechanical parts of a societal machinery.

Higher education exists to provide us with the means—tools,
methods, ability to put such resources together, and build a reper-
toire to handle our way through the world. How can higher educa-
tion do that well and how does a student make the most of it? This
world of higher education institutions is both the world of liberal arts
and of the more utilitarian professions.

In the liberal view, we cannot be satisfied by our culture if we are
to be a full human. Plato, in the Republic, draws this picture of a cave
with us as prisoners in it. The culture is the cave. We should use nature
as the standard for judging our lives and of lives of other people.
This is what places philosophy in its important position in the liberal
tradition.

Science and engineering are a body of systematized and verifiable
knowledge. They express and utilize relationships between definable
phenomena. This is in contrast to matters of common knowledge
or of opinion or of belief. In a loose way, science and engineering
are attempting to resolve if this then that question. It is an attempt at
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completeness in as much is possible given what one knows and by in
some way accounting for what is not known.

Humanities in general and philosophies in particular are explor-
ing an open system of what if and why so questions. The former—
science—is attempting to close a matter of import and the latter—
philosophy—is attempting to open a matter of import by making
sure all assumptions and possibilities are properly questioned.

Understanding and forecasting the world around us—an educa-
tional goal—is experiential. We observe, we guess, we make models,
we forecast, but in the most complex of the problems, it is prepos-
terous to attempt it since there is so much not known, and so much
not knowable, that we might as well drink tea and chew paan. This is
trained ignorance. The university education is enables us to be able
to differentiate and attempt both the complete and the incomplete
problems that can be tackled.

Is a university a collection of a series of disciplines, each of which
has its own rigidly ordered form of study, that is, as separate schools,
or is an education one of a compendium of various disciplines and of
the connections between them? Is it a place for critical thought and of
an understanding of principles so that one can morally and ethically
pursue some career? Or is it a place for learning the wherewithals of
the narrow confines of one direction of application pursuit? It is here
that the dilemma of modern education is. Old liberal ideals, new
scientific and technical needs, or something else?

One can find many liberal education-
oriented books, from Bertrand Russell’s
Education and the good life, Liveright,
(1926), Irwin Edman’s Philosopher’s
holiday, Viking (1938), Hazard Adams,
The academic tribes, Liveright, ISBN 0-
87140-623-3 (1976) to Allan Bloom, The
closing of the American mind, Simon &
Schuster, ISBN 978-5-551-86868-2 (1987)
that argue based on philosophical ideals
of making a human as a citizen of the
society drawing on modern psycho-
logical understanding of the human.
Society is also survival. Philosophers
tend to be idealists. Nothing at all
wrong with it. The challenge of living
and of education however is finding
the middle path between idealism and
making our way through the world.
Unfortunately, engineers, particularly
those who gravitate to management,
less so the scientists, become too en-
amored with the powering of the way
through the world—plowing—and lose
the humanness part. I subscribe to the
middle path. For science and engineer-
ing, there is nothing quite equivalent
as a discussion of ideas. There are
older books, K. Popper, The logic of
scientific discovery, ISBN 0–415–27843–0,
Routledge (1934), W. A. Beveridge,
The art of scientific investigation, Library
of Congress 57-14582, W. W. Norton
(1957), C. P. Snow, The two cultures,
Cambridge, ISBN 0 521 06520 (1959)
and T. S. Kuhn, The structure of scientific
revolutions, ISBN: 0-226-45807-5, U. of
Chicago, (1962), that get much atten-
tion, These are books on the process as
one sees it. Not books that probe the
entirety of spectrum of questions of
why, how, why not, et cetera. For that,
there are two books that I admire. One
is by the great W. Heisenberg, Across
the frontiers, Harper and Row, ISBN
0-06-011824-5 (1974), who discusses
the meaning and ways for a modern
university, and V. Narayanamurti and
J. T. Tsao, The genesis of technoscientific
revolutions, Harvard, ISBN 978067451854

(2021) which dwells on research and
its nurturing, a direction to which the
university is an integral part. An inte-
grative view of science is J. Bronowski,
The common sense of science, Vintage,
(1956) whose discussion of truth and
value in science is very remarkable.
The Chapter 5 has a discussion of some
of the arguments of the books while
discussing culture’s give and take with
science and engineering.

I am a card-carrying phenomenologist. I see phenomenologism as
a scientific process, where one must not get addicted to abstractions
and generalizations, as philosophy so very well teaches us. I see, I
interpret it through my experiences and through my viewing of the
viewpoints of others, where I am more in agreement with Husserl,
Heidegger, and the later existentialists, rather than Ockham or Kant,
or Vannevar Bush or Pasteur. I celebrate our existence. We are bom-
barded with all that is wrong, of despair-des-jour, but in the midst of
all this we are friendly, attempting equality, living naturally, and not
entirely depending on history and culture. This is what makes the
best for ourselves and what sometimes succeed with those around us
and by extension to a bigger world around us.

Many of the world’s brightest young arrive at the Indian Institutes
of Technology in pursuit of education and thereon to finding their
place in the world. Because these are elite institutions, despite high
costs now, the student is materially free to do what they want. Some
of them are also spiritually free. But that depends on the experiences
of earlier years.

A university education—any education—is by itself incomplete.
Getting educated in schools of learning is only a process in the hu-
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man journey of finding one’s place of comfort and pursuit in the
world, where the world, like us, is continuously changing.

Higher education can help and higher education can hinder. For
example, there is nothing in higher education that necessarily helps
a troubled person. It cannot help with how one may want to conduct
life such as in family matters, with the opposite sex, or with corrup-
tion. It is when we handle these within us from deep down in our
consciousness that we learn what life’s struggles are all about.

A student who arrives at the university comes already with a set
of beliefs that have been either drummed in or have been acquired.
Perhaps the student also has a love for art and music, and if that is
so, then the early development has been quite successful. Classical
music, specially instrumental music, but also vocal such as of Kumar
Gandharva or Paluskar or the great operas of Verdi, Rossini or Bizet.
It provides peace and never has the hard bite or discords that words
can have even if they dwell on difficult human matters. Everyone is
capable of appreciating these and some are good at creating these,
They don’t hurt. They speak of aspirations and something deep.

Today, music is everywhere, much more accessible than in the
past. This music of the modern world is also not limited. It knows no
class nor nation, so it does open the world to us. Classical music does
this much more, it appeals to refinement, and in this it is doing the
same as the classical books do.

Every culture has writers who shape and guide limits while we
are young. For Indians, it may be Mahabharata as a conflict of living, Perhaps the Draupadi cheer haran

incident is what is referenced the
most as one of the life matters from
Mahabharata. But it was Eklavya’s
gurudakshina that is seared in my
brain. What a lesson to give to a young
one growing up. Was it the birth
pedigree that was left intentionally
obfuscated or was it a suppression
of competition to the royalty? It is a
conflict that only cleared once one grew
up.

or others, or something else including modern writing—mine was
Naipaul, but others may have chosen Nehru, or Gandhi, or Tagore,
or Premchand or Sharatchandra, or others, for French this may be
Descartes and Pascal, for Germans Goethe and Mann, for Italians
Dante and Machiavelli. They tell their people what their choice is,
and they give a very perceptive view to life’s perennial problems that
weave the fabric of the soul. These are giving us a choice between
reason and revelation, science and piety, choices from which rest will
follow.

In the Naipaul or Gandhi, or Descartes and Pascal, one is making
a choice between scientific rationalism and transcendent faith. Indi-
ans are mostly Gandhian. Faith rules. The French are divided equally
between logical rationality and faith. They reflect a personal view.
Such books are the independent gateway to education.

If a student arrives today with Elon Musk or Mark Zuckerberg as a
hero model, they are following Ayn Rand’s John Galt. Neither Carte-
sian nor Pascalian, but somebody who hasn’t really read or imbibed
books and learning. Such a lack of early education would mean that
the student tries to get enlightenment wherever it is easily available,
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is incapable of distinguishing trash from sublime, propaganda from
insight, or AI-generated from what is truly human. Tocqueville, in
discussing his trip to America before the dawn of the American 20th
century, where he saw it as Cartesian, also remarked that democ-
racy’s greatest danger is enslavement to public opinion. If public is
not free and enlightened, then all else collapses. This is the great dan-
ger that is being highlighted in today’s world, both in the West and
in the East.

An artist’s unconscious is full of monsters and dreams. Not that
much of a scientist or an engineer. This is a reflection of liberal and
utilitarian conflict. The future cannot be really predicted definitively.
It is full of monsters and dreams.

This John Galt syndrome is higher education’s dilemma now that
sciences and engineering have become so powerful and it stresses
why the enlightenment of reason and rationality is so crucial for a
society. While growing up we all have a longing for overcoming of
necessities, tensions, conflict, a resting of the soul, and the constant
travail. A real education must respond to the need that one sees.
A teacher sees the needs in the eyes of the students and in what
is happening in the world around them. The intellectual structure
of the educational institution—modes of working in the various
branches and the organization of the studies—have to reflect this
need.

1.2 University as an institution for higher education and learn-
ing

The university was to be an island of intellectual freedom
without restrictions in the idealized view. But in the process of being
allowed to exist, it is an active and positive participatory venture in
the society, and has to absorb the back flow of society’s problems.

In Germany, when Alexander von Humboldt introduced the edu-
cation reforms in early 19th century, he was advocating the idealized
way of learning. Now it is rarely followed, even in Germany or Ger-
manic countries. The Johns Hopkins model of late 19th century in
the United States was to have a research pursuit—medicine being the
original objective—guide the university. This approach still had the
element of exploration, which centers on philosophy, in it. Education
evolved under societal pressures.

Let me therefore return to the technical vocational enterprise that
is Indian Institute of Technology. It was IIT Delhi that I first saw for
an extended period during my high schooling. It was a few miles
away, I could slip into its library while still a high school student—
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school was early so the afternoons were free—and it was a great
discovery along with that of the library at National Council of Ed-
ucation, Research and Training. IIT with a collection of buildings
devoted to a higher purpose, not necessity or utility, or shelter or
manufacturing, or trade, but with something ephemeral as an end in
itself. The buildings had some tie to each other even though this was
a campus in a big city. I admired that something like this could be
put together. This was a personal enlightenment.

Coming to IIT then was part of growing up, it spoke of questions
that ought to be addressed, what was important was not judged
by money, friendships, shared experiences, models of discussion,
et cetera, something that must have followed with some inkling of
enlightenment.

But surprise, not just IITs, but universities in general, are rarely
Humboldtian or Hopkinsian. Departments tend to have their own
culture and most universities are assemblages of departments orga-
nized into schools. Trained specialists—computer engineers, commu-
nication engineers, electronic circuits engineers, chemical engineers,
doctors, lawyers, teachers, et cetera—are urgently demanded by the
society, and specialized education from the beginning to the limit is
the easy answer. This is addled by the society also looking for man-
agement people for which engineering is the easiest path demanding
as it is in analytic skills.

We increasingly accept the notion that scientific thinking, ways of
acquiring new knowledge, insights, learning sources of errors, build-
ing a logical sequence of arguments, et cetera, that is, learning, can be
found by doing a web-based search or by listening to a webcast.

This is reflected in the current IITs.

I came to IIT Kanpur in 1971, was
born in 1955, the population of India
had not yet exploded, and for those
lucky—accidentally—as in my case
with the environment, it was not much
of a competition to get in then. From
our government school—Kendriya
Vidyalaya or Central School as they
were called then—of our class of 28 stu-
dents from modest backgrounds, 9 tried
the Joint Entrance Examination. All
got in, and some of us did really well.
Only one of these students had used
coaching school—they existed even
then—and he is now in finance. What
we all had was wonderful teachers, spe-
cially in mathematics and the sciences,
curious and absorptive us, and specially
one student who loved abstractness in
a way I have never seen again in life.
It rubbed off. So there were plenty of
spark points towards education and to
promote interest from family, family
friends, schooling, et cetera, and that is
what channels and aligns best with the
objectives of education.

The liberal-utilitarian conflict now has a new persona. One can
see it in various ways that education is pursued in different countries
and even within countries. IITs are quite discipline centered. The
medical schools in India—any place where one goes to get a medical
degree right after high school—are discipline centered. Tagore’s
Santiniketan was of the second type, and that method remains so for
students of Philosophy at most advanced institutions.

But now in modern times we also have institutions of the third
type, even more narrowing. Information technology, and another
turn of specialization, data sciences, are of this kind.

We are increasingly forgetting what different personalities are
like or talk to the personalities out of which some of the gems that
one learns come out or the occasional hearing of something that can
never be captured by the web or the books. This has come about
because of the enormous expansion of science and engineering, the
wealth that comes with it, and is now such that the age-old tradi-
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tional disciplines are held in lower esteem. In United States, the med-
ical schools are an entirely different environment with a further mul-
tiplicative factor in style that comes with this trend. In some institu-
tions, it is the management schools. This society- and wealth-based
change also leads to their being little safeguard against prejudice and
idealogical delusion.

The unfortunate implication of this evolution is that even though
sciences brought liberation from the dogmatic ways starting in the
middle of this millennium, with the overspecialization and the wealth
focus, the science and engineering academic do not necessarily have a
central societal role. Breadth of thought should be a central condition
even in sciences and engineering, and somewhere in this path of spe-
cializing, it got lost in learning and then it lost the vital connection to
being a human.

There are limits to how long in time length the higher education
schooling should be or could be. Humans have a finite lifetime and
the knowledge keeps expanding. Inevitably, an engineering educa-
tion or a science education with all its demands cannot be the same
or much of liberal education. They serve two different motives. Yet,
one is not complete without an understanding of the other. A liberal
student must understand implications of thermodynamics or the
economic relationships of people and effort or of AI just as a science
student must understand the complexity of all the agents at work for
a society to function and progress.

A teacher’s task is to pay attention to the students, know their
hunger and what the can digest, and find ways to get the knowledge
across. A real education responds to felt needs.

1.3 A smörgåsbord of dilemmas

What does education, specially higher education, have to do with
clearing of this path of societal progress? Specially higher education
if one were lucky or could choose to pursue it.

The IIT students are lucky to have the enormous opportunity for
the learning that the becomes accessible to them. But it is not the
same as the wherewithals for living in the world, that is, of life. Life
is quite distinct from that while in academe. Education is not the
same as learning. Nor is the academe the right place for education
unless one is self propelled or falls in the spell of a unique professor,
a signed-and-delivered place for education.

Ideally, a teacher should be occupied in the pursuit of a vision, in
capturing and making permanent something that can only be seen
dimly at the moment, something that the teacher has loved with so
much ardor that the joys of this world pale by comparison. This is
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true both in liberal arts and in applied sciences and unifies them.
But, in reality in sciences and engineering, many of the faculty

are specialists who care mostly about their fields. As with any hu-
man, they care about advancements on their own terms, some are
concerned only with their narrow specialty, and often largely with
the rewards of professional distinction and recognition. This often
means that if a student comes to a faculty and asks, `̀ I am human
and I know what I believe in right now. Can you help me evolve to
more completeness and develop my real potential?´́ Even I would be
at some loss in responding. There is plenty of incompleteness both
in the person, in me, in the dynamics of the society and of the fu-
ture. But this is something liberal arts has asked in one form or other
for ever, and they have an answer. We develop your capabilities so
that when the time comes you will be able to tackle and go forth on
terms that you will be comfortable with. If a science and engineering
program is quite well boxed, it keeps professors busy and they don’t
have to think about these being and nothingness endeavors.

This problem is not necessarily restricted to technical or vocational
learning either. Humanities—the philosophers, language, arts—and
specially the social science folks, who think of themselves as scientific
and free of earlier thoughts struggle too. This is because this is the
struggle of being human. It is a journey, we can develop and respond
using the tools we have acquired and the mechanisms of rationality
that we hold.

Logic is the asepsis of thinking for a student. In humanities, par-
ticularly of philosophy, it is a tool. In sciences and engineering, the
analytics—formulas and coding—are all logic, whether deterministic
or non-deterministic as in probabilities. Student sticks to apparatus
through this stratagem. In this, the absence of worldly experience,
disappears behind a fog. This is where the former with its sense of
proportion and the latter with a future that is poorly divined collide.
We see this often with inventions. Nuclear bombs or climate change
are easy to see, they are playing out in front of us everyday, but the
alienation arising from video games and the search and group-based
internet think are the societal consequences that are harder to per-
ceive. They play out too slowly to register.

In 18th century, real science was practiced by social oddities be-
cause institutions like Royal Society were a means to social climbing.
One can see that in publishing and priority duel between Wallace
and Darwin when Wallace came out with his pamphlet on adapta-
tion, or between Newton and Leibniz with Leibniz’s calculus taking
hold. In continental Europe, the model was of a rich benefactor—
Kings, Counts, Bishops, others in aristocracy—supporting the oddity,
Kepler, Euler, for example.
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The 19th century was about the idea of causes. In order to act, it
is not required to have metaphysical beliefs that are universal, but
that causes and effects can be related and that the resulting rules and
other rules just like them become universal. This too is fallacious.

At the bottom of all general beliefs of this nature is a conflict with
the principles of science. Laplace and classical mechanics say if we
know the present completely, one can determine the future. It is not
a scientific statement at all. Nor is it a literary one. Because it is not
a statement about reality, either now or in future. It simply doesn’t
make sense to assert what would happen if we knew the present
completely. We do not know the present completely and we never
can. This is the great scientific idea of 20th century. The principle
of uncertainty places limits on what can be known in some very
special terms. Science is describing reality as being limited by limits
on observation. It is not asserting anything else beyond observation.
In Philosophy, this is also Nietzsche’s relativism. Laplace is being
scholastic not scientific. No different than the belief of karma. Free
will too is simply a misunderstanding of history. History is neither
determined nor random. With time, we keep moving forward into
newer and new areas whose general shape can be known but whose
boundaries are uncertain in a calculable way.

Science also brings troubles to the mind in the way some learned
changes bring out troubles. It is a division that arises in habits with
which we grew and new habits of thought that science has brought
out. The two sidedness is exemplified in what we are taught to value
vis-a-vis the aspiration for worldly success. Many actions of our own
conduct can ashame us, but which we feel compelled to in face of
the force of the society around us. Atom bomb, some of the abuses
of generative AI, and others are symbols of this conflict. How do we
choose between what we have been taught is right and something
else that is succeeding. This is an empirical test of science. The em-
pirical habit is teaching us that the traditional beliefs will have to
slowly evolve even within sciences. Accepted codes of good and right
conduct change. Every age needs to rediscover its own conscience.
Thrift, sobriety, frugality have evolved, so have independence. This
same holds in arts too. Books and paintings, for example, that are
held to be harmful to public mind by reasons of being devoid of
morality can become acceptable at a later time. When I was young
this collection included Nirad Chaudhury, Naipaul, the worst was
deemed to be Sasthi Brata, yet today, they read just fine and worthy
of debates and discussion.

Scientists and engineers can be easily co-opted. Their interests
are not threatened by the larger forces—social and humanist—that
tend to be at war in troubled times. The connection of science and
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engineering to humane learning is not familial but abstract. There
may be checking of boxes, invocation of rights for all, but nothing of In at least USA’s educational institu-

tions, the engineering students have
at least one module in teaching in
their first years with ethics as a central
theme. A teacher comes, picks a `̀ case´́
study like problem—the Bhopal gas
tragedy was common at the turn of
the century, still known to the students
then—and it ends up with a discussion
and a set of questions that are perti-
nent to ethics for any generic technical
project. There is little discussion of
what all went wrong which led to the
incident starting from the creation of
a dangerous factory in a living com-
munity or of the human aftermath in
short- and long-term remediation and
support. The boxes to be checked were
simple questions of harm or not, et
cetera, with a lot of wiggle room that
had no clarity. This is a subject where
expediency should not outweigh a deep
discussion. Future cannot be foretold
and that is often a big question with
the most difficult of science projects,
so many of whom now tend to have
warfare and human connection. This
same lack of seriousness also exists
with funding agencies where one often
is expected to write a pro forma societal
benefit paragraph.

burning shared convictions and interests. That is a shame. We cannot
live without each other.

This separateness did not exist in times past. Kant, known as a
philosopher was also a natural scientist and inspiration for Einstein
in this. Goethe may be known for his writing, Faust to us, but was
also a botanist. Descartes was a logician and a mathematician who
largely worked lying in his bed. Pascal may be known to many of
us for the Pascal triangle, but French still grow up describing each
other as being Cartesian or Pascalian in their approach to the world.
For much of history, arts and natural sciences were united in being
guided by being, freedom and beauty.

Much of what happens in academe is the teaching of the tools of
the trade. Students of any discipline come to respect the techniques
of its craft.

The goal of the academe though is to develop the mind, to think
independently as oneself and with others, that is, create a collective
of mind.

In a university, one gets to hear and talk to people and hear some-
thing whose power just cannot come from a book. And if one is
blessed, one gets a professor whose lectures are beholden as one
watches and learns from the thinking as it happens in the presence
of the class. The society of mind may appear sometimes by chance
during a walk, or a lecture, or by some other accident, or may emerge
in a casual conversation among friends at a mess table where a con-
versation among friends turns into an exchange of ideas—clear with
deep emotions—that start a fire.

Yet, it is also possible to hear many intellectual words but no ideas
with life in them, with a campus where ghosts of mind walk around.
One hears a vocabulary of ideas, like the language of new mathemat-
ics of late 1960s with few ideas, with many of these ideas dead on
delivery. This is substituting methods for substance like a colorful
gift wrapping of the grain of intellectual training and imaginative
life.

What one needs is the development of strong character, tenacity,
single-mindedness, and working in isolation. These are traits that
need to be learned while young.

Liveliness of mind and acuteness of feelings disappear into noth-
ing if there does not exist a discipline acquired over a period of ori-
entation in principles, in how to handle facts logically, how to dis-
tinguish facts from fancy, and in the variety of ways that facts can be
discovered.

A mechanized university is one where routines of the classroom,
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formal habits, dealing with the same materials year in and out,
makes for an uncritical mind. It can destroy spirits, turn lovers of
beauty and ideas into pedants, even petrify lovers of wisdom into
doctrinaire practitioners, passionate people into submissive, revolu-
tionaries into reactionaries, or more sadly, liberals lose their passion.
But if the university becomes quite mechanized with routines of the
lectures at 10 minutes past the hour, the formal habits of a profes-
sor repeating a course, to the uncritical young ones, it provides one
with the equipment so that experiences can become enriched with
meaning and this may show up later in life.

However, the worst stultification comes from outside, and not nec-
essarily the academy. I have seen students and young people newly
hired who had been awakened in the university with ideas, imagina-
tion and passion, have their spirit killed by the world. Regimentation
and stunting comes comes not from the gears of the academic life,
but from the gears of living.

To work around these dilemmas one has to keep an eye on the ob-
ject, see any thought and thinking at its own terms, stay focused by
not raising foolish and irrelevant questions, and force the discussion
of central and relevant ones. Aristotle did have many beautiful ideas
to discuss that have stood the test of time—What does it mean to be?
certainly—that predate Nietzsche or Hesse or Kant or Schopenhauer
or Aurobindo or Raman maharishi. And then one must act accord-
ingly. That is phenomenology. The truth of an idea is tested by its
use. That is what science tells us too.

1.4 A teacher view

Regarding the teacher, as Plato writes in Republic, it is not what
the teacher but what the world teaches that will count in the long
run. Teachers are catalysts. What a student can learn from the teacher
comes from the habits that appeared in the first years of life and
of temperament that was established in the childhood. A teacher
can initiate enthusiasm, show logic towards a path, and inculcate
discipline for those sensitive enough to be amenable to it. A teacher
can only communicate passion, show methods, and not much more.

The teacher is the transient. A lucky teacher is one if sometime
later a student feels the teacher’s voice inside him or her. It is like
music that is the ultimate, not the musician. A truly great artist plays
a classical piece associated with the composer, and puts nothing be-
tween the composer and the audience. It is what the teacher teaches
that counts, not the teacher. In accomplishing this, the teacher is both
the composer and the listener.
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A teacher has to put on a show, but a content-full show. Students
are then attentive and there is a good chance that there will be some-
thing in the show that will capture them and they will flow with it. A
show includes the teacher thinking on his or her feet in front of the
class, the gentle art of arguments and derivations and what they im-
ply, and when making an error, walking back to find that mistake, be
it in the derivations or the argument. Teachers, who are intellectually
brilliant, but cannot put on a show, should certainly write books since
books are the other way a group of students can be enlightened.

Richard Feynman was beautiful with flow of ideas, was certainly a Feynman’s Character of Physical Law,
a profound scientific but also philo-
sophical subject that he gave as
Messenger Lectures at my academic
home, Cornell, is very worthwhile
viewing. It shows how arguments
can be woven and a show put on.
The lectures and a little more can be
found at https:www.feynmanlectures.-
caltech.edumessenger.html.

showman but also a magician with ideas. He could, being Pascalian,
connect ideas from different streams, arrive intuitively at answers,
and then go back and do the logical derivation of it. Feynman-Kac
formula connecting parabolic partial differential equations to stochas-
tic processes is a beautiful example of this. It is physics and mathe-
matics woven together. Even pure mathematicians—a very reticent
brotherhood—accept Feynman to their fraternity. On the other hand
Hans Bethe was a logician—a Cartesian, he could logically follow
the most difficult of mathematical paths. His Nobel for physics was
the calculation of the 9-step process of fusion in the sun that lights
and warms our world, a calculation reportedly outlined during a
train trip back to Ithaca from Washington. Both had a giant impact
through generations of students in their own way even if they had
very different persona.

For a teacher, fascination with one’s students leads to an aware-
ness of the various kinds of soul and their various capacities for truth
and error as well as learning. There is not much that one does for
a good student, except perhaps to encourage them on by form or
example.

1.5 A student view

Now a bit of my own student experience and its reflection in
life and why I see education as a process in many stages, but most
determined by the character and discipline developed in early life.

As a student, my favorites have been teachers who show the act
of thinking and figuring things out in real time in front of a class. It
rubbed in, emphasized not the objective but the journey, and the joy
of what Feynman calls figuring things out.

Scholastic education, which is the university’s purpose, is benefi-
cial to only a small proportion of the population. Idle rich, for exam-
ple, do not derive any scholarly benefits. For them, the university is a
place for building networks of relationships.
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As a young one on the campus, one could clearly see the intel-
lectual and brilliant as such by the second year when all the past
pre-institute learning had been normalized. Later in life, most of
these are people who have done some of the most interesting things
and have lived a productive life. The childhood and schooling’s char-
acter building and learning discipline showed. The erudite adults
wrote just as well as second year students as they do now appro-
priate to their ages. Campus politicians are still politicians, even if
not in politics. There are some changes too that are observable. Aes-
thetes can become disillusioned or harsh. Sentimentalists can become
cynics. But here too, the change is an evolution, not a parity change.
Surprises exist too, though fewer. A very friendly and well-spoken
student who was not as inclined towards the classes but still inter-
ested became an academic. A very serious and committed academic
student didn’t make it and spent his life on the large-company wa-
ter wheel. A very bright student who always got to the heart of the
matter through his questioning explored many of the varied human
activities and pursuits and then followed through into academia, and
a curious, always smiling, welcoming and ever-happy student chose
not to get advanced degrees but did remarkable creative engineering
work in India and for India. Still a very happy and satisfied person.
Only the very original students, students who always sprung sur-
prises, students that are difficult to classify, of various types, went on
to being very different. Publishers, social workers, revolutionaries,
and many other types, all very non-IIT follow throughs came from
this rank. At least, one, if not more, started successful small compa-
nies with intellectual ideas. This is all type casting. It is a distribu-
tion’s behavior, but therein is the essence that life brings surprises
and many changes of directions and behavior to a select few. Life is
full of educational surprises.

Students do well in the company of other students with whom
they can build the society of mind. Students who want to progress
intellectually—their educational evolution—gravitate to places
where they can pursue those interests practicing, watching and being
guided by people who they think will be good examples. These are
the pre-eminent faculty and this is what seeds the critical mass of
a society of mind resonance of faculty, students and ideas. It is no
surprise that institutions evolve as this abstract collective is dynamic
since the society is dynamic and the great problems of interest evolve
as we progress.

1.6 A summation and plethora of cautions to the student
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Institutes like IIT are a blessing unlike any other for students.
One can see prosperity ahead, a confidence that one will make a
good living. The institute provides a self-contained exceptional envi-
ronment of peers, teachers, and a large support structure. No matter
what the past has been, one now has the freedom and opportunity
for a nonlinear blossoming whether the interest is in sciences or in
engineering, or in between as it was for me.

There is much written about the extinguishing of desire of learn-
ing by coaching used to gain entrance. This is too one sided a crit-
icism. In sciences and engineering and even in writing and philos-
ophy and all liberal arts, it is very important to have much of the
basic tools and methods become a part of the repertoire. They are
to become so natural that one doesn’t waste time in that mechanics.
In turn this gives one the chance to push the frontiers by working
on advanced themes that are not already internalized. If one did not
know multiplication tables and other simple ways of doing complex
mental arithmetics, the order of magnitude estimations themselves
will become time consuming shorting the more important education
and learning: probing of the question of the validity or the impli-
cations of order of magnitude estimates. The real objective is to do
a good reasonably accurate calculation. The order of magnitude is
only a step in the process. Those by-heart learnings—coaching and
the criticized rote—are mechanical tools to aid in the next step. It is
this opening of a new frontier that one should recognize and look for
when coming to the institute.

The institutes will have plenty of good tool teachers, but if one
gets at least one teacher a semester who shows one the process of
thinking even as they teach, teaches one the tools, but jumps and
connects various streams of ideas and shows the intuition and logic
underlying it, one will learn, and that is what the education is about
in all the disciplines, whether engineering, or sciences or humanities.
One has to take advantage of such rare chances and learn.

The precision of scientific thinking is that truth and falsity must be
decided objectively, that even though subjective opinion and personal
commitment are important, they are not sufficient to making the
scientist right.

One needs to be exposed to lots of ideas. But many of these ideas,
unless properly understood, are only intellectual words, a vocabulary
of ideas, are spoken by rote with no life in them. This kind of method
cannot be a substitute for substance.

To accomplish, one needs a very strong character, a tenacity of
purpose, and singleness of aim to work in isolation, specially when
young. Liveliness of mind and sharp feelings can disintegrate into

Malcolm Gladwell is referenced for
popularizing that one needs to have
spent at least 10, 000 hours of practice—
in music or programming and in others
by `̀ hasty´́ generalization—based on
research by Anders Ericsson. That is far
more than the amount of time a student
has in undergraduate college. 10, 000
hours is about 8 years with 4 hours of
concentrated effort every day of the
year. Unlike music playing, science
and engineering can be done without
an instrument too. There is plenty of
thinking that goes into an experiment
of any importance. Same with a large
software effort or in tackling complex
problems.

nothingness if one does not have the orientation in principles, of
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intellectually handling facts, of discovering the way in which facts
themselves distinguish from fancies and the way facts are discovered.

The thirst of experience can be sated but not satisfied if one is not
equipped to endow experience with meaning. This is the intellectual
training of the mind. From this comes a society of mind that is within
and without. It is populated by people one has never met, or that one
may have by accident, or appears as a surprise in casual conversa-
tions with one’s circle of friends by transforming into an exchange
of clearly seen ideas and directly felt emotions, in turn causing and
spreading a mutual fire.

Sometimes it is said that a good student does not need a teacher.
A good library and a time to play will do. No poor or good student
deserves a bad or bored teacher. But a student is blessed if later on
in life, dreaming back, she or he remembers five to ten of the people
for passion for ideas, clarity of them, and the love of communicating
them, and exemplifying it in in their own intellectual discipline and
candor by giving meaning to facts that one would likely not have
found on one’s own.

But there are cautions too.
There are fashions in teaching and fashions in subjects. One has to

choose carefully. One method does not fit all students. Every student
has their preferences that fits with their being. The same holds for
the teacher. This is one reason that different teachers and teaching
styles will appeal to different students and diversity is a big help.
Having some good examples around that fit with one’s style works
well in keeping interests peaking even as one works methodically
with others that are not as appealing. It is ideas from those that ap-
pealed and those that did not appeal that will come together when
attacking some interesting problem later in life.

A hasty ambition should be avoided. It is not likely to lead any-
where successful. The subjects that are popular today because of their
impact on society, or industrial need, or other, will probably have a
life cycle smaller than a student’s working life.

As a student at IIT, one will find much froth since IIT is a micro-
cosm encapsulation of a world envisioned, not the local Indian envi-
ronment one grew in. Once out there in the world, it is like a refugee
camp where unfriendly and or self-centered people idle away.

So it is reasonable to question what good is liberal arts education?
Science changes values by injecting new ideas into a culture and

then subjects it to the pressure of technical change. Gradually, the
whole basis of the culture is imperceptibly remade. The sensibility of
people changes. The Tiktok generation followed the Facebook gen-
eration that followed the Email generation that followed the people
who wrote postcards. Learning and thinking styles changed through
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this technology change. This will continue. I can already imagine
what the AI tools will do for those of us who spend considerable
time at a keyboard. A good liberal arts education keeps a person
grounded. Without imagining monsters and having dreams, science
and engineering can rapidly become demonic.

Just as liberal arts were supplanted by lucrative science with its
utilitarian character, the new world has added a layer of finance
and wealth acquisition on top of it. Business degree is not the moral
equivalent of medical degree. But it is enormously lucrative even
if there is not much by way of scholarly achievement in it. This is
tourism by such students in a science and engineering institution
and it is the modern time’s change to that evolution from liberales to
lucrativae to another turn to enormous wealth.

I will call it Novus opulanatiae, one of creating a new aristocracy
by monetizing results of learning exploiting gaps in society and
governance.

We now have Artes liberales., Scientiae lucrativae, and Novus opulana-
tiae.

It can be seen in USA as also in India. Just as the example of Ke-
pler or Euler, the institutions now turn to these products of the insti-
tutions or other major donors to support them. The dilemma here is
that again, as liberales got coopted by lucrativae, the institutions—
many of the private institutions around the world—are at the risk of
being coopted by the agenda of the new opulence.

One of the most insidious consequence of such changes of the
Novus opulanatiae is that appearance of competence is more important
than the evidence of it. Mind is dulled when engineering is co-opted
as a means to business and wealth. Words like innovation and cre-
ativity to name two in vogue lose their original meaning and new
words such as monetization, thought leaders, et cetera are added into
the lexicon of meaninginglessness. A recent turn has been to crown
individuals as father of a technical field. We have a lot of such fathers,
from internet to various technologies. This is the Matthews principle
fallacy and a pollution of the mind with scientific and political under- Matthew’s principle or effect is the

preferential ascribing credit to one, the
most known one, above all others who
could lay claim. It comes from the book
of Matthew 23:29. Matthew’s principle
is itself an example of Matthew’s
principle, an autological phrase.

tones. Science and engineering are built on the shoulders of work by
others. At some point streams of thoughts merge and a new integra-
tive theme emerges. Even Einstein rode on Reimann’s, Minkowski’s,
Grossman’s and Lorentz’s shoulders to his relativity. We give him
great respect and recognition, but do not call him father of relativ-
ity. Take the word creativity that we have used from very early in
this essay. It applies to self and culture. It is a way of expressing dis-
satisfaction with what is around one, whether technical or political.
It used be the proposing of new hypotheses that got borne out, or
finding new ways to proofs, or inventing some thing new or a new
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experiment. The new meaning of creativity, although it doesn’t af-
fect science and engineering per se, is a pollution of language that is
insidious. It is a form of pollution that is a disorder of our age.

Insignificant speech is a loss of clarity about science and art. It
weakens both in a synthesis of opposites by appealing to the society
that wants to be told that it enjoys all good things. In turn, there is
loss of trust in science and engineering. So scientists and engineers
hurt themselves by the constant practice of describing small steps
as giant progress. This is where those in liberal arts can keep us in
check.

University education should be a privilege for special ability. En-
trance and continuation should depend on continuing advantageous
use of the time by the student. Both the teacher and the student
should be driven by curiosity and learning, so research and knowl-
edge of work around the world is essential. New knowledge is the
chief source of progress. Utilitarian knowledge needs to be fructified
by disinterested investigations. It is these that help each one of us
understand the world better.

Relativism, both in the liberal and the scientific sense, is necessary
for openness. Just because one has learned arithmetic of addition and
subtraction, or from day one religion has been forced in, does not
mean that the world of knowledge and questioning must not keep
opening up. The major questions in nearly all areas of sciences and
engineering today are of completeness versus incompleteness. This
is true through quantum uncertainty and in the classical from not
knowing all. This is where relative truths arise.

Ancient worship is a common religion. One tends to build myths
by suppressing faults and inconvenient story lines. As a child and
a young youth, I read and noted all the European history indus-
try, Toynbee, Taylor, Gibbon, the American history interpretation of
Durant, the Indian interpretations from Majumdar or Nehru or the
British scholars such as Basham. They were not satisfactory. They
had in common either imperial or colonialist view or an adulatory
view with much to question. Why and how and where from are
important questions to understand one’s trajectory which is what
history is. I realize now that these books were what we will now call
not scientific. All data needs to be looked at unbiased in case of the
past even if that experiment cannot be repeated. It is still not possi-
ble to see a good discussion of why with all the great contributions
in mathematics—hindu numerals and 0 without which one cannot
even start mathematics properly being the most notable—pre-10th
century and great arts and writing, the Indian science and the soci-
ety declined so precipitously over the next millennium. The Greeks
and Romans were not perfect, slavery abounded, so did blood games
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in the Coliseum, and the dark ages of Europe can be directly tied to
the uncritical acceptance of Greek teachers put on a pedestal, or the
Church sticking to a dogma. This is history of myth making. Native
Americans had to be disposed of, shrunk into small pieces of reserva-
tions, and their former areas renamed and their languages banished
to rewrite the history as Puritans so successfully did. There is even
a holiday named Thanksgiving to celebrate the `̀ illegal´́ immigra-
tion. Now we build walls after Ronald Reagan is hailed for a speech
calling `̀ Mr. Gorbachev, tear down this wall!´́ just a few decades
ago. Slavery was hardly there in the books, nor a discussion why
there were so many Scots in British East India Company and why
the worst acts of brutality came from them while the company was
establishing itself. In all this, people are just trying to improve their
lot, and setting aside one’s values to get ahead is a time-honored way.
One can see it in the way how companies build dominance such as
in the high technology industry. These acts are all around us. Ni-
rad Chaudhary and Naipaul were right, Amitava Ghosh explores
this well, and David Graeber and David Wengrows recent book and D. Graeber and D. Wengrows, The

dawn of everything, Allen Lane, ISBN
978-0-241-40242-9 (2021)

Thomas Piketty’s brought it home. These are all books that took a

T. Piketty, Capital and the twenty-first
century, Harvard, ISBN 978-0-241-40242-
9 (2013)

more scientific approach instead of relying on dogma.
So one really has to be a skeptic. That should be the natural sci-

entific way of conducting oneself. It helps with determining what
is right in at least one’s viewing through the enlightenment that the
education gives one.

Learning has a relationship with the life of the community, not
just of some refined delights. Disinterested learning, the learning of
useless knowledge, is powerful. One never knows when one will use
it, and it provides surprising powerful segues. This is a reason why
search and online learning is not the answer. Both lead to channeling
and rote. The pleasure of a library is not alone in the book one was
looking for, but of others that one suddenly discovers as one peruses
the shelves. So never lose your love for a good book.

Being human is to give one’s love and care and companionship to
people. A university is the place where the persona solidifies, and
is the ideal place to reach across the spectrum—from the sweeper to
the director—that makes humanity and be one with them. Music,
besides its humane nature, also stimulates the analytic part of the
brain. Music instrument learning is not easily accessible growing up.
The institute is an ideal place for spending some time making this
new friend. The same with learning a foreign language. Language
flows from and in turn determines the thinking styles of communi-
ties. We become prisoners of language, something that media and
management and governance exploits since it dulls our thinking and
limits the scope of thinking. A foreign language—French or German,
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for example—will open the mind and reduce bias. There is tremen-
dous Cartesian and Pascalian reading that can be very refreshing and
keeps one young. Hesse, a wanderer of the soul, or Mann, an analyst
of the soul, in German are more powerful than in translations. Same
with Victor Hugo, an anti absolutist, or Albert Camus, an analyst of
what it means to be free, in French.

While this essay has stressed liberal arts quite strongly—the rest
of the essays kneel quite thoroughly over to the other side—it is pru-
dent to hold on for later in life the bigger questions of the liberal
theme. The discussion here is to encourage one to think broadly,
open one’s mind to the different ways of questioning since the world
is an open system. Liberal thinking in science and engineering pur-
suit can be very helpful and keeps one human even if mostly prac-
ticing scientiae lucrativae. These bigger questions for the later stages
of life certainly must include those related to ignorance, such as the
dichotomies of reason and revelation, freedom and necessity, democ-
racy and plutocracy or authoritarinism, good and evil, body and
soul, self and other, city and human, eternity and present, being and
nothing. These I leave for long walks.

What we now have in the new world is that men and women can
hope to live in the same way and study the same things and expect
the same from careers. This is enormous progress. For this we should
be thankful. This is one of the great successes of liberal arts and
sciences and engineering together.



2
Large and small: The problems of scales in semiconduc-
tor electronics

The ability to `̀ control´́ semiconductor structures at nanometers scale and in-

tegrate in multiple dimensions has made an integration of near-trillion scale

possible using structures that are largely surfaces and quantum-mechanical-

sized material. This is a non-random statistical assembly of near-classical

objects. Information manipulation in this assembly must occur under con-

straints of energy and variability that has static and dynamic manifestation

from the assembled object particles. Deterministic computing, which is

largely the present paradigm, leads to a variety of consequences and con-

straints that set limits. Most of the modern themes—machine learning and

neural networks in practice of artificial intelligence—are still subject to these

since the implementations employ deterministic computation based on basic

linear algebra subprograms (BLAS) even if dealing with probabilities. This

essay is a discusion of the limitations that are far away from thermodynamic

information capacity efficiency arising in such approaches, some common

misunderstandings, and sets the context for what and which kind of prob-

lems under what constraints become amenable to exploration of alternative

information-processing techniques.

Today, we are capable of making devices, structures, intercon-
nects, and integrated electronic assemblies at the nanometer scale.
We can pack controlled and reproducible forms that can talk to each
other and operate on each other at an extremely high density on chip
scale, changing connections on the fly, on package scale, and connect
themselves further out in the cloud and all over the world. We can
connect things that are at the Avogadro scale with the near-atomic
sized small dimensions.

This is pretty much a statistical mechanics problem of predict-
ing the behavior of a large collection of entities interacting with
each other. It is similar to that of nature, which deals with it in the
physical and natural world with atoms and collections of atoms into

Science and engineering in the world
© Sandip Tiwari, (2023)
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molecules and solid, liquid, gas and plasma phases, inanimate and
animate, with an energy flow through them. Later on, in this series
of essays, I will stress that this is really a statistical problem of infor-
mation. For now, just view information as a characteristic associated
with the properties that we employ at any representational level to
see how the physical and natural laws—the laws of evolution—show
us the physical and natural evolutionary behavior in describing the
system.

Event though we have arrived at the atomic scale at one end and
the Avogadro number at the other end, what we are ending up do-
ing is practicing the traditional deterministic way of computing at
nature’s scale. This enterprise has been a great success, but it is also
a paradox in keeping the deterministic flame alive. Large numbers
means that all the past hundred plus years of learning is informa-
tive and instructive. This deterministic paradigm—starting with A corollary to this statement of statis-

tical mechanics of information—across
nature to the computer realm—is
also that this general purpose deter-
ministic style is man made, nature
is non-deterministic, so probabilistic
computation to machine learning and
artificial intelligence are also natural
computational styles. This is tying
of the natural and physical world on
computation. The next two essays will
dwell on these themes.

Boole’s and others’ early work—will exist and continue to be enor-
mously fruitful, but it is also undergoing an evolution to new non-
deterministic directions. There are limits to what we can do deter-
ministically. Plodding along step by step and consuming energy at
each step has to have limits. We cannot just keep going down smaller
and smaller ad infinitum because we would eventually get down
to a single particle—be it photon, electron, or atom. Plodding and
consuming energy through Avogadro-scale interactions too is not
going to work. There are limits to energy as also the time it takes to
complete any logical stepping. So, there is going to be a question of
deterministic versus non deterministic computing that is inherent
in this. I would like to build an argument over the first three essays
starting with a discussion of deterministic approaches and their limi-
tations and wondering what ideas really are there that are interesting
to pursue. Ideas for the future perhaps or at least speculation about
it. In discussing the future in the social

and economic milieu of today in the last
couple of lectures I will also pursue a
few of the life lessons in this informa-
tion journey and what it says to me for
the science-in-society future cone that
it unfolds. It too is a non-deterministic
evolution in the midst of large number
of interactions.

These first three essays are an exploration of the information en-
gine and the technology in the world. I arrived at the IIT campus in
1971. It was a silicon bipolar transistor world by this point, we were
taught from the book of Millman and Halkias, which was devoted to

J. Millman and C. C. Halkias, Integrated
electronics: Analog and digital circuits
and systems, McGraw Hill, ISBN-13

978-0070423152

various analog circuits and their characteristics and also had a dis-
cussion of emitter-coupled logic (ECL) circuits. Transistor-transistor
logic (TTL) circuits, which were much more fascinating because of
their internal dynamics through a clever amalgamation of structure
and action, was from the Texas Instruments handbook that profes-

The TTL data book for design engineers,
Texas Instruments, (1973).sor R. N. Biswas used. Integrated-injection logic also got a mention,

again another very clever twisting in structure-action form. Memories
too appeared in the teaching. All these digital logic, analog circuits,
and memory circuits were all based on bipolar transistors with a side
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discussion of nMOS transistors.
It was also in 1971—I did not know it then and I don’t recall it

being mentioned in any of the classes—that the first Intel 4004 4 b mi-
croprocessor arrived with a transistor count of about 2250 transistors,
so an order of magnitude of a thousand, using nMOS technology.
A few of the well-off kids had calculators. Prof. Ramakrishna and
Prof. Oberai banned them. By the time a calculation was done, one

Ramki—Prof. Ramakrishna—wore very
bright colored shirts, yellows and pinks
as I recall, had an incredibly flashy
smile, and wrote the toughest tests I
have ever encountered. Points were
both positive and negative. The class
average of the first mid-term test was
−19. Fortunately I did well. Ramki
insisted that only slide rules be used
in the transport and thermodynamic
calculations. So did Prof. Oberai. Prof.
Oberai wore the whitest shirts I had
seen until that point, management and
Wall Street types came later. I still have
the slide rule that I had at that time.
In recognition of the personal feel that
the slide rules gave to calculations and
numbers as one worked through log-
arithms and exponentials, I have now
amassed a large collection, thanks in
no small measure from a gift from my
father-in-law. They go well together
with the abacus. The lobby display
at IBM Research Center in Yorktown
Heights, with models of Babbage’s
engine, and so many other creations
of past history, can’t be beat. These
instruments are a tool to information
manipulation, like function transforma-
tions, in a restricted space of symbolic
mathematical manipulation.

could easily be off by a factor of 2 because there were enough loga-
rithms and exponentials involved in the computation. The calculator
made a difference and of course the computers made a difference.
The computing world was opening up and it was not difficult to see
this unfolding playing out. By 1980, when I got my PhD, bipolar tran-
sistors had almost gone from digital to analog usage meaning that

In the early 1980s, the IBM mainframes
still used current-model logic CML
and ECL—speed, and not power, being
of paramount importance. It takes at
least ten years, if not more, for new
technologies to establish. This is true
here, same is true with the appearance
of the digital infrastructure based
phones, of internet-based commerce,
of internet-based secure contracts
and paperwork, and so many more
things. All these new acts are based
on the deterministic semiconductor
computation and communication
infrastructure.

DEC and HP and a lot of other companies were making nMOS-based
real-time computers with direct memory access. Microprocessor had
arrived and computing was starting to get democratized. So, within

I still have my first IBM PC − XT
bought a couple of years into my em-
ployment sitting in the basement and
waiting for the day when playing the
games written in BASIC will bring
back lost memories just as the slide
rule reminds me of Napier’s enor-
mous contribution to computation and
the profoundity of exponentials and
logarithms and infinite series in under-
standing simple everyday changes.

a decade of the first microprocessor, we had the Motorola 68000, with
that number indicating a processor with 105 transistors. The proces-
sor was now a hybrid 16 b–32 b system. In a decade, one has moved
from 103 to 105, while I was still undergoing university training. The
education really blossomed at IBM Research, where there were many
great scientists and engineers from whom one could really learn and
develop the critical skills of questioning, distilling principles and
meaningful laws, getting to either precise or good-enough answers
with an understanding of the constraints and limits, and finding
one’s path in the midst of constant evolution.

In 2023 (today), the bipolar transistors still exist, but they exist in
advanced technology as silicon-germanium bipolar transistors with
some silicon bipolar transistors because all the multi-decade and
hundreds of GHz transmissions, the LIDARs and everything else
that are used in cars and other places for figuring distances and sur-
roundings, and so on, need dense transmission and analog-to-digital
conversion. Computing, by and large, is based on CMOS circuits that
are mostly static and some dynamic depending on the needs. Central
processing units (CPUs), graphical processing units (GPUs), tensor
processing units (TPUs), artificial intelligence units (AIU), et cetera,
all operating at high frequencies, but far more so operating in a sys-
tematic design that flows the entire processing at high speeds, are all
CMOS. Video and data flow rules with all the machine learning forc-
ing new designs where matrix calculations and propagations happen
in ensembles without having to wait for information to accumulate.
The problems have been projected in a different way. The most ad-
vanced CPU processors today are Apple’s based on ARM at a 4 nm
node. The GPUs and TPUs are at 1011 transistors such as for NVidia
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H100 and Biren BR100 at the chip scale. So, between 1980 and today,
40 years, one has gone from 105 to 1011 transistors. The processors
are moving terabytes a second within the chip because of the way
the buses and architectures are organized. These are T f lops units,
not consuming 20–30 W, but factors of 20 more than that. Just like
the old mainframes of the bipolar era, they need a lot of complicated
cooling and design.

These are all examples of deterministic computing. This is de-
terministic in the sense that they follow Boolean logic, or Leibniz’s
algebra of concepts, and De Morgan’s laws, and even if one is mak-
ing probability calculations—manipulating probabilities—it is be
being done deterministically. Deterministic methods to preform inde-
terministic approximate determinations. These are deterministic calcula-
tions implemented with semiconductor structures operating to deterministic
limits. Boolean logical transformations take the past states, operate
under evolutionary laws coded logically and making a determina-
tion. When they make predictions—speak to the future—it is determinism
connecting a known past with an unknown future.

2.1 Deterministic digital computation and nature’s computation

Figure 2.1: The deterministic—Boolean
logical—and the non-deterministic—the
behavioral, probabilistic, inexact and
incomplete—universes that we compute
our life in.

Computation, and life as a computed endeavor as we practice
and live—occupies two universes. A highly simplified view is in
Figure 2.1. This essay is about the world on the left. The following
two essay will focus on the right.

In deterministic computation, we proceed step-by-step in a re-
stricted phase space, where many states are blocked off by the com-
putation’s evolutionary law and the boundaries we build by extract-
ing the most significant of the characteristics on which we build our
computational hierarchy. We are now working with machine states
that this machine may traverse. The restricted phase space is this ma-
chine state space—a collection of the logical states of all the elements
in this machine whether it is in the memory or in the registers and
the arithmetic logic units, and others—a state space that has been
flattened out into a bit net configuration, with the path traversing
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the space in time. This state space is the computational analog of the
deterministic phase space of Lagrangian or Hamiltonian mechanics.
It is a different way—digital bit representations instead of continu-
ous position and momentum variables—of looking at the machine
universe. For some reason, if one somehow jumps out of this uni-
verse to a state that is not in it, one gets the blue screen of death. The
enormously successful digital enterprise has been able to use this de-
terminism, the digitization, the implementation of the Boolean logic
in computation—the logical transformations are the evolutionary
laws—in the operating system that implemented the computation’s
flow. The input data was our boundary condition of the starting
states, and the computational software that combined both the flow
and the data could be admirably implemented, used, and reused, by
staying within the restricted phased space.

We make hierarchical boundaries so that only the essentials are to
be kept track of. This makes computation manageable for problems
that have to deal with only a very very very small amount of data
such as transactions involving digitally measurable money, or dig-
itally computable calculations, or writing and manipulating text in
digital forms, and so on. The description on the right is of the natural
world, of Avogadro-scale numbers that can not all be kept track of, or
even measurable to utmost precision, and so are inherently non de-
terministic. We humans work with such incompleteness and indeter-
minism constantly, sometimes making a fool of ourselves, sometimes
computing with aplomb. The worldly space is an unrestricted phase
space. While we may be wrong a fraction of the time, it is a much
more robust way of doing certain set of problems—the problems of
inference in midst of incompleteness. If one has an understanding of
how the probabilities are of jumping from one machine-state condi-
tion, to another further out in time, one can skip a lot of computation
and get it right with some acceptable probability. This is what non-
deterministic computing performed on deterministic apparatus can
also achieve and is what goes under the moniker of artificial intelli-
gence these days.

The deterministic computing may be brittle, but is very apt for
a certain sets of problems. It is restricting itself to a small subset of
states that can exist. The instructions, the data, and the precision
decides what that space and what coarse- or fine-grainness is going
to be as it moves along a machine-computed trajectory.

Data is not information. Information and knowledge are words
that are loaded, scientists use it in one way by ascribing some precise
definition to them, Shannon’s being one example for information in a
channel, but philosophers would explore them with a very different
lens. This too, I will come back to in the last two broader essays.
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Figure 2.2: Three line sketches. What
are they describing? What information
are they conveying? Figure is from
Olshausen (2008).

A good example to clarify how context and some pieces of data
are more informative than others can be seen through Figure 2.2.
What are these lines describing? Answers may vary from some ab-
straction of geographic visual, things floating on a surface, et cetera.
Figure 2.3 fills regions, that is, identifies dark versus light in the
sketches and suddenly they appear as faces. A small set of bits suf-
ficed to give meaning to the data sketched in the drawings.

Figure 2.3: Using a few bits of infor-
mation describing the regions to be
darkened, one can see them human
faces. Figure is from Olshausen (2008).

Try to get a computer to figure out whether it’s a map or a face
without that fill information. Just as for human, it will be a difficult
task. This illustrates that there is certainly an interesting conjunction
of the kind of problems one may wish to be working for in the future
and the kind of problem one can do now. It is the second set that
is more challenging, not that the first one doesn’t need continuing
progress too.

In deterministic computing, we abstract across scales, on time
scales and on size scales, so that we get important abstracted charac-
teristics right and eliminate the other excess information not relevant
to the task. This is one way of taking tasks being performed on 1011

objects on the chip scale, and Avogadro number on the cloud scale
to reduce down enough that they can be tackled deterministically.



2: large and small 31

Even with this reduction, statistical mechanics and thermodynamics
are important. Try keeping track of 1011 pieces of information. Take
the smallest size-scale devices with quantum-mechanical description
important to understand the behavioral properties of the devices.
Take a bit bigger, connecting devices, with signals stepping in ps and
bouncing back-and-forth, or take these small signals and expose them
to fluctuations between the devices programmed in at the time of cre-
ation, or taking place in time since energy causes change, or just the
presence of thermal or shot noise, and we are in the statistical realm.
1011 device structures, with dimensional range from atomic scale to
10s of cm and earth-scale in their presence in the cloud, or switch-
ing taking place at ps to slowly drifting in s means that different
physics models need to be incorporated depending on the context of
the specific situation to be modeled. Models can be physical in how
the device physical behavior is modeled—quantum-mechanical as
well as various progressive approximations of methods of moments,
structural—how chip-scale timing, routing, power, electromagnet-
ics, and other matter are dealt with, and behavioral—the high level
abstractions of system design. The quantum-mechanical effects man-
ifest themselves into some emergent property that one needs to feed
into the next level, for example, a quantum master equation mani-
fests as a on-equilibrium Greens function description, which in turn
feeds into hydrodynamic and Boltzmann form, eventually into the
drift and diffusion. But even this grossest of simplifications will fail
if one were trying to assemble the effects of hundreds of such devices
coupled together in a sequenced chain. One needs compact models
that tell us the current, voltage, charge and time behavior in manage-
able forms with some idea about noise and cross-talk. Add to this
thermal effects because energy is being dissipated. Even this needs
to be abstracted further for higher level design of large circuits, reg-
isters, arithmetic-logic units, memory, et cetera being put together.
Hierarchy building on hierarchy, capturing abstractions, is still a
building up of complexity, and approximations building on large
numbers of units interacting.

This brings in the relevance of statistical mechanics and thermo-
dynamics, which it is also another reason why deep neural network
techniques become ever more appealing. There are parallels in com-
plexity in the hierarchy and assembly of large numbers to the com-
plexity in neural networks deploying nonlinear transformations and
weights still implemented through CMOS logic gates. For some
problems, the newer techniques may be quite inefficient, but for
some, they will be more efficient The neural networks are behavioral,

There is a false presumption that neural
networks are enormously inefficient
in energy. Consume large amount of
power, something of the order of 10×
for searches, for example, compared
to conventional map-reduce based
methods. Relevance of the search
output also matters. The training of
the neural network is an accumulation
of prior learning, just as we humans
are learning building on the past five
hundred years of science and our own
living.

they employ probabilistic principles even if they approach all calcu-
lations deterministically in order to figure things out. Being a very
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different approach, they are useful for a range of complexity that
the conventional deterministic methods are very poor at. This is the
dichotomy between the two tuniverses.

Nicolas Lenard Sadi Carnot and Rudolf Clausius, among the first
to explore thermomechanics, and developing the early understanding
of energy conversion and efficiencies, taught us how putting energy
in can lead to useful mechanical work, the relationship to heat, and
the processes—time scales and exchanges through isothermal or adi-
abatic processes—interrelate. Carnot bequeathed to us the Carnot
efficiency limit of conversion and Clausius the term entropy. Without
dwelling on the enormous confusions and fallacies involved in terms
like useful work and entropy and how one may interpret them, leav-
ing them as nebulous terms, the underlying idea of engine of energy
conversion has been profound.

All engines are engines of information. A mechanical effort is an
informational change even if because of our natural development of
how we look at these matters from an early age there is a physical
transformation that we ascribe to the notion of work. The physical
transformation is reflecting an informational change. Information
is physical. To write a number 1 or a letter a, one needs a physical
representation in chalk or binary representation in voltage of magne-
tization or current form. Same with smell in the olfactory structure.
Same with music in the auditory structure and in how we convey
it to be reproduced. A block moved from one place to another is an
Avogadro number of particles in a new place. Even for mechanical
purposes, this is a large information movement of what is important
for mechanical purposes. For example the emergent property of mass
that encapsulates it. All engines and all actions involve manipulation
of information.

The reason mechanical work or heat are fallacious is because they
are not really definable. Objective science demands that. A wheel
turning doesn’t move yet is doing work. So, we introduce pseu-
dowork. Try understanding work in the context of a point particle
like an electron undergoing a spin angular momentum flip! This
same fallacy holds for heat. The pedagogical treatment starts putting
a slash in the form of dW and dQ to call out path dependence. En-
ergy conversion efficiencies now start depending on path. Do it slow
enough—adiabatically—and one can be efficient and makes us face
Zeno’s paradox. Heat is not necessarily motion, sometimes it is,
sometimes not. Spin glasses exist.

Hartley, Shannon, and Szilard, by exploring these conundrums
taught us to look at all these energy transformations through an
information view. Lack of information is increasing entropy. Not
randomness, which is another vestige fallacy still taught. Heat is
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information content lost, and this places entropy in context with the
vestige from the past.

The electronic engine is a apt place to show these notions at work.
That data is not information through the example of Figure 2.2 and
2.3. Shannon’s notion was related to useful transmission of a col-

The data is information is the same
fallacy as embedded in useful work
and heat. Whose work and how use-
ful? What heat? Sometimes one needs
warmth and it is useful. Same degener-
acy issues pervade data.lection of content from one point to another. What content says and

means what the interconnections in the content is is for one to fig-
ure out. To Shannon, faithful transmission of data was the core, and
he labeled it as information. Even if information may also exist in
addition and is not represented in his metrics.

Information manipulation leads to informational effectiveness
in executing some action. This is what information engines let one
achieve. There is energy involved since any change in information
content, extracting informational value and leaving the state in an
unknown state, involves energy. A state of maximum unknown is
a state of maximum entropy. Extracting a single bit’s informational
value is kBT log2 2 of energy following which one does not know
what state it is in. The information engine is using bits encoded
and achieved through a large ensemble, so plenty of Boltzmann and
Gibbs statistical distributions also appear in the energy transforma-
tion.

We now have a picture of the emergence of features of this elec-
tronic engine. In steady state, the chip is undergoing activity at some
factor α of the cycling. Let U be the energy expended in the active
transformations and let A be the area of the chip. There is energy
loss of informational unknown—the traditional Q—and one has a
time constant of the engine response of

τ =
αU
QA

. (2.1)

If there is single-dimensional flow of heat, such as dissipation occur-
ring over arrays, semiconductors like Si have a heat carrying capacity
of about 102 W/cm2, which places τ = 5 ns as a time constant. If one
was fast in some isolated element, with heat flowing three dimen-
sionally, Q ≈ 105 W/cm2, and one can reach a τ = 5 ps. The former is
a limit with activity over arrays, such as large matrix engines, the lat-
ter over clock generators, such as ring oscillators. This is an example
of emergence of averaged properties. The specifics of the engine were
irrelevant.

Figure 2.4: An energy-state landscape
schematic where one attractor state is
higher in energy than other and are
separated by a barrier.

A simple understanding of determinism can be drawn from an
energy-state landscape picture as seen in Figure 2.4. The abscissa
is a generalized state coordinate. There are two attractor states, call
one 0 and one 1, a low state and a high state. If one is transitioning
from one state to another, one has to surmount a barrier. One has to
remove this barrier—some active energy is needed—and let the state
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flush out and go into the other state, for example from left to right.
For right to left, one would have to raise the energy of the state too.
The figure is of two energy wells separated from each other. Chang-
ing means some combination of raising well energy and possible
change of barrier. Change can also happen by fluctuations. A fluctu-
ation taking place in this barrier—this system is in a reservoir of the
universe at some temperature, say 300 K at the least.

Trapped in either of the wells, the microstates captured by the 0
or 1 macrostate, has a chance of transitioning to the other macrostate
because of the statistical nature of the Boltzmann distribution de-
scribable through the entropy. There exists a rate constant of transi-
tioning from one to another with an Arrhenius factor. It is this pos-
sibility of transitions, when not expected, that is an error. The rates
are exponentially related to the energy barrier normalized by the
thermal energy. They are inverse functions exp[−(U′ −U1)/kBT] and
exp[−(U′ −U2)/kBT] with this factors representing the rate proba-
bility of transitioning from one well into the other. The temperature
has shown up as a thermal source of excitation. We like the barrier
energies to be very high is so that this error rate is much smaller.

This is such a simple picture, but so elegant and beautiful metaphor
for the schema relating Boolean logic to deterministic computing. De-
tails are of course more demanding. The CMOS transistors form
such a well structure in the inverter form and in the variety of multi-
ple fan-in and fan-out forms. Gets complicated, but one of the impor-
tant simplicity there too is that one can make very poor transistors,
they may be off from what was planned, yet in a static gate form,
they are going to have one state near the lowest potential, usually
a ground, call it the 0 state, and the other near the power supply, a
high, call it the 1 state. The electrochemical potentials of reservoirs
primarily determine the two attractor states.

Figure 2.5: (a) and (b) show the switch-
ing of a CMOS gate which takes charge
from the supply and puts into ground
dissipating the energy QV, (c) shows
the butterfly curves of input-to-output
and output-to-input, where the two
ends are stable points of the two attrac-
tor states and the middle intersection
is an unstable state. (d) shows a gener-
alized picture of the energy landscape,
where transitioning will requiring rais-
ing of the well energy and the changing
of the barrier energy.

The shortcoming of CMOS is of course that in one switching
event, where the output is going from low to high, the load tran-
sistor places charge on the interconnect line represented here through
a capacitor and then when it goes to a low state, the charge from the
high state that was there on the interconnect line goes to the ground.
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Much of the energy one extracted from the supply has been lost to
the environment and only some used in the Boolean-coded informa-
tion. There are only a very few places where one can actually recover
that energy and those are ones where both of these terminals have
to be floating clocks. Sometimes this is quite acceptable, but they are
hard to design. You can see in this picture of CMOS drawn in a but-
terfly curve. With Vin driving the abscissa, one gets a Vout following
the red curve. If this was fed in, so Vout is now inputted, one gets
the second curve. There are two intersections and an unstable point
where the device gain changes the energy barrier and pushes the
states from one to the other. The stationary states here, one low near
the ground and one high near the supply, with a separation and abil-
ity to recover since the large gain of driver and load (a negative large
number) forms a window over which the low and high states can
fluctuate and yet this state will remain pretty much the same. The
Boolean aspect is going to be maintained and that picture is essen-
tially this picture. There is a barrier in energy that one has regardless
of which state this system is in.

If one takes two CMOS gates and connect them back-to-back to-
gether. one gets a reinforced stability, with each driving the other as
logical inverters. This is static-access memory, using deterministic
mechanism feeding on each other. It is bistable. It is stable in either
of the states.

This picture for memory is instructive. Take ferroelectrics. They
can have a spontaneous polarization up and a polarization down.
These are are also stable states and there are some others similar sta-
ble forms too, for example, tunneling diodes attached back-to-back.
By and large, we don’t use these. There are too many shortcomings
to list here. But, they are examples where bistability keeps them
undisturbed except through the fluctuation mechanisms where they
must overcome a barrier.

The contrast to this are random walk memories. They are much
more common because they are much more dense. A transistor con-
nected to a capacitor, with the capacitor connected as either a stack
or a trench capacitor, with the leakage from the capacitor being con-
trolled by pinching the transistor. A 40–25 f C charge, few tens of
thousands of electron, which are periodically backfilled is the assign-
ment of the state. Something similar happens with resistive memo-
ries. These are all structures where flow paths are being pinched. It
is not a barrier in the path, but just an impeding of the leakage. If
one makes a material more insulating so the current leakage is much
smaller. An example is by transitioning to a more resistive amor-
phous phase. In the crystalline state, it conducts more. The change
between the crystalline and amorphous forms is is slow in time. But
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we know from thermodynamics that of course crystalline will always
become amorphous if you wait long enough. That amorphization
is the arrow of time. This is the consequence of the second law of
thermodynamics. It is a higher entropy state of that system.

The ubiquitous non-volatile Flash memories are similar pinching
of leakage. One stores charge, but as a result of where the charge is
and the higher electrostatic energy, it has propensity to leak. Except
that the insulators are generally very high quality and leakage mostly
small except in the poorest of the structure. The charge does leak out
if one makes these memories poorly and there are leakage paths on
the edges or elsewhere, we have to take care of that.

The spin-torque memories are magnetic memories that too are
bistable. They become stable because whether if one thinks in terms
of spin precession or one thinks in terms of polarization changes
of the magnetization fluctuating under the statistical conditions,
the picture is very similar. One has a time constant τ related to the
propensity to appear in the other state by spinning over or random
walking into it. The spin magnetization and what that barrier is
and what that barrier does is related to the anisotropy. One can go
down as low as 75 kBT in energy and it will remain reasonably stable
sitting there quasistically. If one keeps flipping it, it will now lead
to more errors because one is energizing the system. Flipping more
means more errors will appear.

So, even in deterministic conditions, whether staying quasistatic
or changing, there are going to be errors that will arise in thermody-
namic causes.

With logic, such as with CMOS, for the errors in deterministic
Boolean logic, one is interested in not just the state persisting in time,
but also in the expected change (or not) when inputs change. With
the thermal environment under the electrochemical bias and ground,
one can view this change as a fluctuating response curves as shown
in Figure 2.6.

Figure 2.6: A pictorial view of a biased
CMOS inverter at temperature T.

The barrier that was there is now fluctuating, the transformed
equivalent picture of this situation is of course that there are fluc-
tuations taking place in how that barrier is moving in between on
those curves as the switching takes place. If the cause of fluctuation
is thermal, it is independently random, the errors are going to be re-
lated to also how many times one is switching, and what the thermal
interference is. Considered independent, this means that there are
distributions, shown in the figure, where when 1 is expected a 0 is
observed and the converse. The errors appear whenever one passes
the threshold. With Gaussian distribution, a gain g in the transition
region and a change as a function of input characterized by a sen-
sitivity function S, the probability distributions and from these the
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errors of the integrated area under the curve on the wrong side of
expectations is
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The equations follow from the simple argument that there exists
(1/2)Cv2 of energy associated with the potential degree of free-
dom. The wiring is all in an environment into which the particles—
electrons—flow in and out. This is a second power law and therefore
it is (1/2)kBT of energy from classical equipartition.

The operating of this CMOS gate means that there is a rate αν in
some frequency—a clock frequency, for example—with an architec-
ture and function dependent activity factor α < 1 —at which these
voltages are being sampled, and they must remain deterministically
correct. This is the error arising entirely due to thermal fluctuations.
With the error quantified, the problem can be reversed.

One of the beauties of CMOS gates is their back-to-back coupling
of inverters as bistable memories: the static random-access memory
to which we add additional pass transistors for accessing and isolat-
ing from an array. These back-to-back inverters are self aware. One
uses the same gate configuration for stable memory and by coupling
to this same form as sensing and writing amplifiers, one can read
and write through the access transistors.

What does Equation 2.2 say if one takes a chip with 1010 gates, a
clock frequency of 1 GHz, a gain of g = −10 with α = 0.1? The
largest integration scale today is 1012. The reversal tells us that to
have only 1 logic computation error in 10 years of operation, an en-
ergy of 260kBT per gate is necessary to overcome thermal causes.

There are lots of sources of fluctuations, some of them are even
programmed in at the time of fabrication such as due to the vari-
ous structural factors and the doping and so on. Arising in multiple
causes, some independent, the net is again a Gaussian. It is of the
skewed variety and is observable in the variations of the threshold
voltages of the different transistors being employed. The energy put
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into the switching and the opening up of a large enough window for
the tail to decay places limits on the scaling of voltages that can be
employed. If one incorporate these factors in too, then the standard
deviations necessary consistent with the biases that can be employed
also show trends of the finesse demanded at high integration. Fig-
ure 2.10 shows a plot of this for a simplified but instructive model
1010 transistor calculation. If one wishes a high yield of six 9s, wants
to use 1 V bias voltages, then standard deviations of 10 mV order are
needed. One may do some adaptation and some corrections in order
to overcome some of the errors, but one has reached a limit that is
bounded by some function of integration, energy, bias voltages and
the level of control one must be able to exercise.

Figure 2.7: The bias-standard deviation
behavior for an integrated circuit of 1010

transistors.

This issue of fluctuations and the deterministic correctness expec-
tation shows up in a very significant way in the random walk mem-
ory structures where the memory state is not a low energy minimum
but a slow-drip unstable state. This is the issue of variable retention
in dynamic memories and the that of testing and replacing columns
of devices where a single device may be poor, and of more complex
architectures requiring testing and pumping of more charge in to the
quasi-nonvolatile charge storage memories.

The variable retention issue arises in the Poisson distribution of
singular defects that happen ever so rarely. All one needs is one
defect near the transistor with the transistor affected by trapping and

A 40 f C of charge on a capacitor is
about 250, 000 electrons. If one wishes
to refresh a cell say every ms at the
worst, and yet integrate 1010 of such
cells, then one is deep in the tail of
a distribution. This means that the
transistors have to have aA leakage
currents—they need to leak at the rate
of 10 electrons a second—so that the
worst case can still be compensated for
by refreshing in ms. It is an incredible
feat that they work so well.

detrapping.
The energy picture of variable retention is shown in Figure 2.8.

There are good cells and ever-so-rarely there are poor cells. Because
there is an electron charge stuck nearby, the pinching barrier changes
causing the capacitor to leak much much faster. These random walk
related variability issues are pernicious and are there across the disci-
plines when one looks for it.

Figure 2.8: The problem of variable re-
tention influenced by Poisson statistics
of rare defects in random-walk memo-
ries such as the dynamic random access
memory.

Its most immediate signature is random telegraph signal behavior.
Random telegraph signal is observable in recombination in transis-
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tors whenever a shot-like behavior happens rarely. Defects trapping
and then re-emitting ever so rarely is a shot-like behavior. In dynamic
memories, you can push the barrier up and reduce the leakage a lit-
tle bit by the back bias but you still have to cut the leakage currents
significantly. Such memories have to be refreshed at least 100 times
faster than what we would normally have.

These two examples illustrate the consequence of determinism to
the traditional implementation of Boolean logic in deterministic form
in semiconductor technology. Computation however is not just this
data transformation, but also needs data flow, whether through short
or long interconnections in all the different forms. This need now
connects Shannon’s description of transmission of information.

Shannon tells us what the channel capacity—the rate that one may
not exceed—of a Gaussian channel given some signal to noise power
ratio (S/N) and a bandwidth B is C = B log2(1 + S/N). If one has
a 100 GHz interconnect transmission channel, and one is employing
low voltages such as in low-voltage differential signaling (LVDS),
maintaining timing acuity means that a channel capacity of about
2B is needed. For a 5 GHz clock, this is a S/N = 3 for the LVDS
approaches, which with 10 % duty cycle needs about 14kBT energy
for each bit. This is another 10% on top of the thermal fluctuation
constraint and the minimum supply constraint. Everything adds up to
increasing energy because of the need of determinism be it logic or memory.

This entire discussion up to this point is from semi-classical con-
sideration of constraints.

When faced with limits, numerous alternatives are forwarded,

Alternatives are always interesting, first
for technical reasons since they exercise
the mind, but second, because often
some are so thoroughly unsound, yet,
somewhat in desperation, we welcome
them and quite often hide them behind
the word-de-jour, interdisciplinary,
for example. Rolf Landauer, who saw
ferroelectrics and tunnel diodes as first
such sorties at IBM during the late 50s
and early 60s, the former deficient for
reasons I will discuss, and the latter
because of limits to voltages, currents,
and the variability, but most of all
for the absence of directionality in
the computation, once remarked to
a speaker, `̀ But you must give us a
reason for us to leave our ship for your
spaceship.´́

some of them become useful, and in the most special of circum-
stances, a new technology is born and takes over. The replacement of
vacuum tubes was on of such fortuitous turns, but more often than
not, many such forays are wishful and often filled with fallacies.

This introduction to the current state of computation with semi-
conductors in this technical sequence is an appropriate moment for
such an exploration for its educational value.

2.2 Transistors: Fallacy of placing quantum wells as another bot-
tleneck in a transport path

We start with quantum structures based ideas for electronics. Quan-
tum as a central operational principle has been enormously success-
ful with the now ubiquitous quantum lasers, and although jury is
still out for quantum computing, there is much algorithmic and in-
tellectual that has been learned and applied in machine learning that
will be the subject of the third essay.

Figure 2.9: The threshold characterizing
two energy subbands and relationship
to any variations characterized by the
standard deviation in the well width L.
A threshold delineates the error of the
spread causing errors in identifying the
association of the operation with the
binary operation.

Quantum’s success in communications, where individual device’s
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fidelity is critical and one doesn’t integrate at gigascale, therefore is
not statistically constrained, is the first point to be stressed.

Figure 2.10: The bias-standard deviation
behavior for an integrated circuit of 1010

transistors.

Use of quantum wells within device structures is the one such
instance. At the simplest, a one-dimensionally confined well, with
in-plane freedom movement has subbands. Take a structure with
two subbands so that one can associate a binary form to them. For
an idealized infinite well, the energies are n2h̄2/2m∗L2 with n = 1, 2
and m∗ as the effective mass. There is an inversed square dependence
on the confined region’s width L. This large inverse polynomial
dependence on the size means that the energies are going to change
significantly, an estimation of which is in Figure 2.9. The equation for
error, following similar arguments as those for the CMOS gates are
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where C = h̄2π2/2m∗ characterizes the constant of energy scaling
arising in the effective mass. The smaller one goes in size, the larger
the energy spread, but far worse is the scaling in error since one is
now at discrete size limits. A 1 nm width is three interplane spac-
ings of common semiconductors. This is not a square-root limit for
variability. It comes with large discrete jump.

This broadening effect is well understood as a homogeneous
broadening in semiconductors. It should be obvious that such struc-

Linewidths of bipolar lasers remain
narrow since the effect is simultaneous
for both the conduction and the va-
lence band unlike the case of unipolar
semiconductor lasers. The broadening
arising in uncertainty is related to the
leakage that transport through a con-
strained well region wishes to exploit.
Being tied for this limit to ∆E∆t = h̄/2,
any expectation of 10 ps time constant
would be a requirement of 0.033 meV
of linewidth. The homogeneous broad-
ening will therefore prevail as seen
in the standard deviation’s impact in
Figure 2.9.

tures are not even conducive to integrate a hundred devices, let alone the
peta scale of transistor technology.

2.3 Dynamics and statics are different: Fallacy of Schottky bar-
riers in conduction path

Leakage of an off-transistor that needs to be turned on to operate
at low energy is an important design issue in transistors. Having
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a transistor be well off is a constraint on the threshold voltage. So,
proposals have been made to incorporate weak Schottky diodes as
injection and collection structures. This is in a way similar to the use
of quantum well in series, where flow through through the subband
is being turned on or off. With Schottky diodes, it it is the contact
regions as shown in Figure 2.11.

Figure 2.11: Placing a weak Schottky
barrier in series at source and drain
and its effect on the dynamics of the
transistor.

Placing Schottky diodes does reduce current. It is placing an
impedance in the path that is being controlled with gate modulating
the region underneath it which includes the channel that is serially
linked to the diodes. Using metal electrode instead of doped elec-
trodes metal electrodes with barrier heights, 0.2 eV, for example, will
certainly have some consequence of how much current can be passed
through too under steady-state conditions. But, the more pronounced
consequence is in the dynamics of arriving at the current conduct-
ing state. There exists an abrupt barrier right at that interface with
the Schottky diodes. What one does when one places doped elec-
trodes as contacting regions on either side of the channel and apply
an electrostatic potential to them, is that one is controlling the electro-
chemical potential at the edge of the channel. The quasi-Fermi energy
is nearly a constant at the interface. There exists enough thermal flow
of carriers that only a small excess is sufficient to supply the current.
A small perturbation is near constant quasi-Fermi energy. This says
that there is no impedance arising in the interface. The actual current
is being limited by the channel region—a p-type region for the n-type
transistor drawn—through which the flow must take place and it has
to be consistent dictated by current continuity. With doped regions,
carriers can stream in and carriers can stream out from the source
and drain contact regions.

With a Schottky barrier, even one with say 0.2 eV barrier, electrons
coming in have to jump over this 0.2 eV barrier or tunnel through this
barrier. This is now rate limiting. If the device is off, this tunneling
does not exist as seen in the (c) panel of Figure 2.11. The reservoirs
have limited connection, the barrier height itself has reduced the
injection by a exp(0.2/kBT) factor. Diffusion will not do. Turning the
gate voltage on, such as in panel (d) has limited ability in controlling
the channel region while it starts from the off state, and electrons
can not be easily supplied since the source and drain reservoirs are
impeded by the barrier. Most of the field tying the gate charge ends
up in the metal contacting region or deep in the substrate. This is a
situation more akin to the MOS capacitor than of MOS transistor.
In a MOS capacitor, thermal times prevail, not the fast transport
times. This is the problem of the dynamics versus statics. This structure
looks perfectly fine if you look at it electrostatically in steady state.
If we apply the voltages, wait long enough, it’ll pass the current,
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perhaps with some reduction in current. But to get to that point is
limited by a dynamic resistance of kBT/ei, where i is small in off
state, and for a 0.2 eV barrier, the limiting consequence of the barrier
is exp(−0.2/0.0259) ≈ 0.0004. This device has latency with orders of
15 ps or more delay consequence arising in the short barrier height
Schottky barrier. It arose because of the absence of a direct control of
the electrochemical potential of the channel side of the junction.

2.4 Dimensionality reduction has reciprocal-space funneling con-
straints

The next example is that of attempting to exploit large mobility im-
provements, that is, reduced scattering, on reduced dimension struc-
tures. This problem too has statistical foundations. If one takes a
silicon transistor or any other transistor that has a two-dimensional
conducting channel, so a Si-like inversion layer or a heterostructure-
like accumulation layer, and one places a a three-dimensional region
for injecting charge adjacent to it, there is an interface resistance aris-
ing in the occupation of states in the confined region connecting to
the occupied states of less-confined region. Fortunately, through suit-
able choices in doping in contact region, the impedance can be kept
small and the contact treatable as ohmic. When one has a classical
metal with metal contact, one of layers say few atoms thick, because
of the large scattering that happens in metals, and at metal interfaces,
means that the resistance will be low. A very heavily doped region
of Si interfacing a Si inversion layer, again the large scattering in
the doped Si region means that there will be a high probability of a
stream directed towards the confined inversion region. The same is
true in heterostructure transistors.

The Schwartz Christopher transformations give us a tool for mod-
eling these situations of dimensionality changes and of sharp corners
where the abruptnesses can be mapped so that one can view and
model the flow patterns not unlike a large diameter pipe interfacing
to a small diameter pipe. It is the flow in the extended regions that
determines the net resistance arising in the presence of the interface
and causing a three-dimensional electron velocity distribution to
transform and connect to a two-dimensional electron velocity dis-
tribution. Rate-limiting region is spatially stretched out and can be
modeled and it does it pretty accurately.

Figure 2.12: A three-dimension to
two-dimension region interface, where
the mobility is poor in both is shown
in (a). In (b) the reduced-dimension
region has high mobility and quantized
conductance prevails.

Now consider a metal and a high mobility, that is, one with very
few scattering events reduced dimension region interface. Figure 2.12

shows the previous case of a silicon inversion layer—plenty of
scattering—and the case of limited scattering. How do electrons in
the metal enter and transport through the two-dimensional ballistic



2: large and small 43

region of atomically thin layer below? They have to scatter in. Some
with low-angle scattering some with high-angle scattering, with the
lower-angle more likely. Only some scattering processes allow some
of these carriers to jump in. The scattering process is going to be a
rate limiting step. A simple transmission-line model shows that a
contact resistance of

Rc =
(2αβ + β2)

1/2

2β
Rq coth

[
(2αβ + β2)

1/2
L
]

, (2.4)

where β = (1/2)gcRq, and α = ρs/Rq exists spanning the diffusive
and the ballistic limit. α characterizes the scaling factor of quan-
tized versus diffusive transport. When in ballistic limit, limα→0 Rc =

(Rq/2) coth
(

1
2 gcRqL

)
, and when in diffusive limit limα→∞ Rc =√

ρsch/gc coth
√

gc/ρschL. The important implication of the behavior,
physically viewable, is that, very long contact regions are needed to
make a low resistance contact to the high mobility region since only
a very narrow funnel of carriers with energy and momentum match-
ing through the scattering can couple. What is gained the improved
transport properties of the lower-dimension medium is lost in the ability to
couple.. The devices may be short gate lengths, but they will be large
devices from the large contacts that are needed. The carriers need to
funnel in the reciprocal space.

2.5 Transistors: Subthreshold swing manipulation is of limited
utility

Subthreshold swing manipulation via tunneling through the con-
fined conditions is another theme of the past decade. We discussed
quantum means to discriminating between two subband energies
earlier. Subthreshold current swing manipulation are of a similar
flavor. The proposition is that with no states connecting to the onset
of connecting by making bandstates available through electrostatic
manipulation may provide sudden current changes not subject to the
Boltzmann tails. Tunnel diodes of old are based on conduction in the
negative direction and positive direction around zero bias, and then
a suppression through the disappearance of tunneling states, and
then at higher forward bias the appearance of diffusive current. The
proposition is that, examples are shown in Figure 2.13, by placing a
tunneling structure at one of the contacts, one may cut off tails. One
could do this in a variety of ways since staggered band lineups and
other possibilities exist with I I I-V compounds.

Figure 2.13: A three-dimension to
two-dimension region interface, where
the mobility is poor in both is shown
in (a). In (b) the reduced-dimension
region has high mobility and quantized
conductance prevails.

Gallium antimonide and Indium arsenide structures, and oth-
ers, offer different discontinuities in different direction across the
interface. The issue is that ensemble fluctuations and homogeneous
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broadening itself, as we explored earlier, is of the order of 10 meV.
Add to that Gaussian fluctuations of the control of the dimensions
of the well. This is similar in nature as the issue of bipolar and
unipolar lasers. The quantum cascade lasers have much much larger
linewidths because of inhomogeneous broadening compared to bipo-
lar lasers, and this same behavior will appear in subthreshold swings
in tunnel diode structures.

Figure 2.14: Tunneling between two
quantum wells to reduce the subthresh-
old swing.

Take an example structure of coupling quantum wells to quantum
wells to reduce linewidths. The tunneling in such structures must
conform to

Ei
c +

h̄2k2
‖i

2m∗c
± h̄ωq = Ej

v +
h̄2k2
‖j

2m∗v
, for energy, and

k‖i ± q = k‖j for momentum. (2.5)

Take the Lorentzian lineshape of an intrinsic quantum structure, and
consider Gaussian fluctuation in thickness of ∆. One has

〈∆(r)∆(r′)〉 = ∆2 exp(−|r− r′|2/Λ2)

∝ Fmn

=
√
(∂Em/∂L)(∂En/∂L)

∝ L−3. (2.6)

Now the broadening is to the third power inverse of the dimen-
sion. This, in a similar vein as that in Figure ?? is of the order of
10–30 meV. It has become the same order of magnitude as the ther-
mal energy and the current has been limited by the number of states
coupling.

2.6 The problems with ferroelectrics

Ferroelectrics have found multiple cycles of interest since the 1950s.
The property of being able to store energy in spontaneous electric po-
larization and its manipulation with small device compatible voltages
with thin films is attractive. After all ferromagnets—spontaneous
magnetic polarization—have found large-scale usage in disks and
tapes for various hierarchies of storage. But, herein is the issue since
early debates on this issue between Landauer and Merz: Electric
polarization is polar while magnetic polarization is axial. This leads to a
variety of static and dynamic consequences with spatial intervention. See W.
J. Merz, Physical Review, 95, 1, 690–698(1954), and R. Landauer, Journal of
Applied Physics., 28, 2, 227–234(1957).

Figure 2.15: Load line effects in obser-
vations on tunnel diodes in (a) through
(c). (d) through (f) shows the same for
ferroelectric structures.

One can illustrate this problem through two examples. First, con-
sider the issue of hysteresis and under what conditions is it observ-
able through Figure 2.15. If one has a load line—defined by the slope
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1/RL—as in (b) and sweeps from low voltage to high voltage, one
would follow the left (I, V) line till the Γ point at which point one
would jump to the right (point C) and then follow the diffusion-
dominated current rise. If one was dropping the voltage from up
high, one would stay on this right curve till Λ and then jump to
the point B. The negative dynamic resistance of the tunnel diode is
buried in this hysteresis because the load line resistance is higher
than the dynamic resistance. If one made it lower, one would actually
see the negative resistance as (c) indicates so long as one has condi-
tions that prevent oscillations such as damping through oscillation-
induced dissipation. Tunnel diodes, by forming the hys-

teresis window and being fast, were
used for a long time in sampling scopes
through this careful load line design.
One could observe fast transient phe-
nomena using an even faster transient
from the tunnel diode.

The equivalent for ferroelectrics in Figure 2.15(d–f) for a transis-
tor is the introduction in a gate. (e) here in the charge–field picture
shows the hysteresis jumps arising with the order being largely one
way on the left and the opposite way in the other. The charge–field
implies an equivalent capacitance load line, and one can imagine
seeing the negative dynamic behavior as in (f). The problem with
this description is the following. Being polar, spontaneous polar-
ization can be pointed up or pointed down and this can happen in
adjacent cells. The spontaneous polarization happens with a subtle
very very small fraction of unit-cell size movement to form dipole
one way or the other. Movement is crystalline change. In order for
the movement to progressively change, the polarization needs to also
progressively change. But, a change in crystalline movement couples
laterally and propagations happen. In the case of tunnel diodes, there
was an external damping mechanism. Ferroelectrics need something
equivalent, and that is clamping, that is, preventing size change. But,
the transistor gate structure is free. So, the structural effect will lead
to ferroelectric domain propagation—an oscillatory phenomena—
as shown in Figure 2.16. In this figure, a paraelectric interface layer
is also shown since most ferroelectrics employed are not crystalline
heterostructures, and the oxygen in them, in time will form the more
stable oxide interface layer.

Figure 2.16: The problem of ferroelectric
domain propagation, similar to that of
tunnel diode current oscillation, unless
clamped.

What these illustrate is that negative dynamic parameters, while
theoretically may appear as stable points, the dynamics of the change
is to make them unstable, and this dynamics is from within the phe-
nomena, in this case the polar nature of the polarization. Any fluctu-
ation will cause a bounce. Changing the gate voltage is a change that
will lead to large instability, and the response time of that instability
is at sound velocity through the solid’s response. This is a ns time
constant.
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2.7 Thermodynamics and statistics rule

The lesson of all these examples is that thermodynamics and statistics
must be kept front and center. Their consequences for deterministic
processes is a price in energy and a limit to the efficiency, no different
than that within Carnot cycle.

Figure 2.17: A double-gate transistor
with the second gate driven voltage
amplified from the first gate. As the
first gate is turned on the second gate
is reducing the threshold voltage of
the transistor. The result is a sampling
along a curve of lower threshold swing
so long as the entire structure can
respond with the quasistatic speed.

An interesting illustration of this is shown in Figure 2.17, where
very small subthreshold swings can be seen to appear, but there is
energy price to it, and there is a speed price to it. This is a double-
gate transistor with two separately accessible gates. One gate can
therefore be used to change the threshold characteristics of the
transistor dynamically. By changing the voltage of the other gate
by putting energy into the system and if you change the voltage of
the other gate you can change the threshold voltage of the channel.
If you can change the threshold voltage of the channel you can move
along another path so you can get a sub-60 mV swing. One needed to
dissipate energy in the amplifier, the speed will be reduced, and there
is more space needed by the entirety of the structure.

Figure 2.18: The highly integrated
semiconductor circuit as an electro-
information engine.

These are all illustrations of how thermodynamics enters in nearly
all the important considerations of structures at the vast scales of
integration in the deterministic approaches. A Carnot-like encapsu-
lation of this picture of electronic engine is in Figure 2.18. Consider
a circuit of 1010 gates, with a fan-in and fan-out of 4, and 1000 termi-
nals. It has a maximum information content of 1.5 terabits. This is
its configuration volume. If this chip accesses about 256 Gb of data
from an on-chip memory, the maximum convertible negentropy is
5.8× 10−9 J/K for the chip and 3.5× 10−12 J/K for the data, that
is, a total capability of 6.9 nW − s of information engine capacity.
If it performed all this work in a second, it would consume 6.9 nW,
if it performed all this work in a ns, that is, about one clock cycle, it
would consume 6.9 W. Real microsystems consume nearly orders
of magnitude higher power. The Carnot-like efficiency of useful in-
formation work compared to energy inputed tends to be a percent
of less. This is not unlike, what we found with a single gate, a deter-
ministic inverted needed about 250 kBT of energy for 1 bit of manip-
ulation, which is informationally kBT ln 2 away from randomization.
So a ratio of (ln 2)/250 of efficiency.

The next essay will take a stab at getting far higher efficiencies
by relaxing on the deterministic constraints, and by thinking prob-
abilistically, in the next essay using conventional and unconven-
tional forms towards these limits by exploiting the native probabil-
ism of nanoscale and of architectures that can connect this scale to
the real world scale by debating the underlying deterministic and
non-deterministic approaches and conventional and unconventional
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device forms.





3
Non-Turing machines: Stochastic and probabilistic learn-
ing circuits

The world is probabilistic, whether classical arising in the incompleteness

of the classical unknowns or of the natural randomness as in quantum-

mechanical fluctuations or their spontaneous classical manifestations. The

Turing machine is a computational device that explores the extent and the

limit of what can be computed. A simple view would be that it sets limits

for implementation of deterministic logic implementation in a computing en-

gine. Boolean, von Neumann, for example. Probabilities, which have within

them the objective versus subjective conundrum, not unlike the natural world

we inhabit, provide a non-Turing means to computation as one learns. The

Bayesian reconstitution of the probability with new information is the sub-

jective tool for this learning. This makes stochastic and probabilistic learning

circuits possible, compact and specific, that can operate rapidly and at low

power in real time on real-world problems. This essay discusses the under-

pinning of the computational approach and develops and gives examples

of implementation in circuits, where the probabilities are derived using the

low-power randomness from superparamagnetism.

We have built an argument that deterministic correct-
ness in computation exacts a large thermodynamic energy penalty.
At its best in CMOS-based deterministic implementations in an
Avogadro-scale environment one would expect under the best of
conditions ∼ 300kBT dissipation to overcome fluctuations arising in
thermal environment, fluctuations programmed in during fabrication,
and changes that ensue during usage. This is excluding the standby
energy because off is not really off. This integration number corre-
spond to current state of the art of the densest processors employed
for machine learning extended to the cloud. The local processing
unit—an artificial intelligence unit (ALU), or a tensor processing unit
(TPU), or other forms that consume much more power since speed
is desired. Thermodynamics is quite complete in describing these,

Science and engineering in the world
© Sandip Tiwari, (2023)
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including their information engine efficiency of less than a percent. In thermomechanics, the Carnot ef-
ficiency is of the order of 37 % for
conditions of the combustion engines,
such as in cars. They come pretty close
to it.

Although highly inefficient, the deterministic computing has been an
extremely successful paradigm that we will continue with. A prac-
tical issue with continuing past practices is that this element—the
transistor—is now at nanoscale, abounds with surfaces, and that
these very small structures are essentially surfaces with numerous
quantum-confinement contributions from what little there is of the
bulk has a lot of variability.

The Avogadro scale number of devices and structures put together
when one looks at the cloud-computing level makes this enterprise
entirely a statistical problem. The last essay argued that the physical
phenomena that is being exploited in devices and computation in
various ways is all a statistical problem of evolution under the evo-
lutionary law that we prescribe for the computation. Materials could
be silicon, could be any compound semiconductor, could be atomic
layer thickness, maybe there will be some additional implications in
all these various material forms, regardless, the statistics and ther-
modynamics tells us what we are going to get out of it in terms of
an information-centric objective if we think that it must be always
correct, that is, that it has to be error-free prediction and inference.
Error free by itself puts energy constraints per bit to overcome the
statistical and themodynamic matters of knowns and unknowns.

Let us therefore step away from this correctness limitation and
explore what one could do if one could actually exploit random-
ness and probabilities. Maybe there are some interesting low energy
things one can do with this twist. This may take us in a non-Turing
direction, that is, not being formally complete in the same way that
Turing tells us how it should be. As before, we will employ simple
toy models to gain an understanding. Toy models are useful tools to
clearly see through given the constraints.

Taking the argument of relaxing how accurately one wished to
compute, let us first see what may be achievable. Our assumption is
that often, being off in the the lowest significant bits is not as big an
issue for several computations. For most of nature’s species—birds
and animal, getting the order of magnitude right is good enough. Economics, businesses, much human

enterprise gets away with such approx-
imations pretty well. As an infant, we
start knowing the count of 1 and 2, but
more than that is many. As we get our
number sense perfected, we may get to
the point of single or low double digits.
The reason for 10s, 20s, 100s, 1000s et
cetera, as being significant markers is
that they are a general number that are
useful and descriptive. We don’t need
to be specific to 997 when 1000 is good
enough.

An ensemble of n = 1010 gates with m = FI = FO = 4 as inputs
and outputs, and t = 1000 I/Os can access a configuration space
of NN , where N = nm + t. Memories being a very specific inter-
section organization of the binary possibilities, on the other hand,
can access M2 configuration space . This ends up being a 7.3 nW · s
work capability. Thermodynamics tells one from this that waiting
for a ms for some big computation to finish should be doable with
just 103 times 7.3 nW power. Reality is worse since current technol-
ogy is far off the limits of few hundred kBT, being about 10000kBT
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per bit and the computation is sequential and not en-mass. One can
see in this estimating all those ways that the thermodynamic notions
came in. If one could relax the ability to the least significant bit, that
ism let them be more error prone, one could change the thermody-
namic activation slope of the curve for any limits one places on the
error. An example of adder, where one allows the least-significant bit
(LSB) to relax is shown in Figure 3.1. The obvious thing to note that
there is an exponential dependence arising entirely from the simu-
lation. Thermodynamic expectation of form matches a quantitative
estimation from device up. One can live with some of these errors
for certain applications. A daily one is the the usage in compression
techniques, that is, soft techniques, for example in the compression
one does is to reduce the size of images.

Figure 3.1: Activation energy of model
adders where scaling of voltage is
employed to relax least-significant bit
errors.

The problem with all this estimation by relaxing error require-
ments, while still computing deterministically, is that one could re-
duce power by a factor of 2 for a factor of 104 in the errors. This is
important to note. The toy model is a beautiful ways of understand-
ing and not have to do simulations all the time because simulations
always go into a very very specific niche.

One can expand on this to emphasize the power of toy models. The opposite point also needs stressing,
that is, the power of tackling complex
models with machine learning. This is
what Kac called a deep truth, which
is a statement, and its opposite, both
being true. This is duality, which shows
up in so many places. Even in simple
philosophical matters. To know that
one is happy or satisfied, one needs to
have experienced unhappiness and dis-
satisfaction. A quantum superposition
in a two-level system can be one or the
other, from which the power of entan-
glement as non-product states appears.
Deep truths are the counterfactual of
opposites.

3.1 Toy model of deterministic approximate calculations

Consider a floating point inexact addition, A + B,

A(≡ an−1...a1a0) + B(≡ bn−1...b1b0) = S(≡ sn−1...s1s0). (3.1)

Take a sum S′ within a probability distribution pσ(S′ − S) centered
at S of width σ, all expressed in normalized form, for example, in
units of least precision (ulps). If σ � 1, bits less significant than σ can
be ignored and the circuit truncated, that is, those parts shut off, to
make the LSB ∼ σ. This is reducing power, where one has employed
σ ≈ 1 as a useful marker for error. Now consider distribution of

sums, exp
[
−π(S− S

′
)

2]
for Gauss-normal, or 2/π[1 + 4(S− S

′
)

2
]
−1

for Cauchy-Lorentz like distribution. For |S − S′| � 1, that is, in
tails, the discreteness can be ignored and what is important is the
exponential or polynomial tail. Now take arithmetic circuits com-
posed of elements α = 1, 2, . . . , M. Adders come in many forms, but
carry-select, a common one using half adders generating partial sums
and Kill/propagate/generate (KPG) signals is a popular one that
combines blocks to form carry propagation tree. Multiplexers at the
output select the partial sums based on carry-propagation trees.

In this arrangement, for every element α, let Uα be the energy
dissipated per computation using design/voltage scaling, εα the
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the probability of error, and wα the weight for each element that
quantifies mean magnitude of numerical error in the answer caused
by incorrectness in the element while all the others are correct. In
a multiplexer corresponding to the bit k of output, the weight is
2k ulps. This is the weight contribution to the error in a complex
assembly.

Now assume that the errors of each element are uncorrelated.
When an element, α ∈ W ⊂ 1, 2, ..., M, is incorrect, it causes an error
of 〈(S− S′)2〉W = ∑α∈W w2

α. Accumulating W as the set of erroneous
elements with probability [∏α∈W εα][∏β/∈W(1 − εβ)], the error in
the final result would be within the constraints of the probability
distribution pσ(S′ − S) so long as[

∏
α∈W

εα

] [
∏

β/∈W
(1− εβ)

]
≤ 1

gW
pσ

(
∑

α∈W
w2

α

)
∀W ⊂ 1, 2, ..., M, (3.2)

where gW is the degeneracy, that is, different subsets W that lead to
the same mean-squared error ∑α∈W w2

α. In a more rigorous analysis the right
hand side will be eplaced with a sum of
eigenvalues of the covariance matrix.

For Gaussian distribution, the constraint on error is satisfied if

εα ≤
1

gW
exp

[
−πw2

α

]
∀α. (3.3)

For the Cauchy-Lorentz distribution, the equivalent requirement is

εα ≤
2/π

gwα(1 + 4w2
α)
∀α. (3.4)

It is gratifying to see that this toy model follows to the same re-
sults as that of the last essay. We end up in this formulation, follow-
ing Gaussian distribution, of U ∝ − ln ε, same as what was estimated
on thermodynamic grounds, and a proportionality constant that
depends on the source function of errors. For threshold voltage varia-
tions, the energy is ∼ CVDDσVT . For thermal noise as the source, it is
∼ kBT.

This methodology lets us look at cases of interest. One is the carry
tree linear chain: an inefficient ripple-carry adder in carry-select.
Take an adder, a KPG unit, 1 multiplexer per bit, except for the ex-
trema, with elements at bit level k each weighted as 2k. We have a
degeneracy gwα = 3. The energy dissipated per computation for an
entire n-bit adder under Gaussian distribution errors is

U ∝ −4
n−1

∑
k=0

ln
(

1
3

exp(−22kπ)

)
= 4n ln 3 +

4π

3

(
22n − 1

)
, (3.5)

and the Cauchy-Lorentz distribution errors of

U ∝ −4
n−1

∑
k=0

ln
{

2/π

3[1 + 22(k + 1)]

}
≈ 4n ln

(
3π

2

)
+ 4n(n + 1) ln 2.

(3.6)
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U ∝ 4n ln
(

1
ε

)
for the flat errors in exact arithmetic. Between this

set of equations, one can now tell where the approximate adders can
be more efficient given the Gaussian or Cauchy-Lorentz distribu-
tion. The lesson of this calculation is the same as one found through
adder simulations and a set of results are shown in Figure 3.2, one
for adder and one for multiplier. Factor of 2 is about the limit to the
savings, whether one considers adders or multipliers. There are only a
limited number of tasks where traditional deterministic computation calcula-
tions relaxed for constrained errors can be gainfully used. And that too will
only be factors of 2. This is simple analytic analysis leading to the same
result as a more complex model-based simulation.

Figure 3.2: Relative energy consump-
tion in adders and Booth multipliers
under various distribution functions of
error. Factor of 2 is about the saving the
energy in best of cases.

So we must look elsewhere.

3.2 Using randomness and Turing approach

The history of information mechanics engine is an interplay
between algorithms and physical platform. Hardware and software
together, software drives hardware, hardware drives software, and
one finds symbiotic approaches depending on what is constraining
and needs to be addressed. This is linear perturbation and a linear
approach. For example, today everybody is doing stream process-
ing with graphical processing units because that way computation
is mapped to streaming, thus not waiting for information to arrive
to continue a computation or passing a lot of information around
on a chip. This is efficient, both in timing by disposing of waiting
requirements and energy since there is not much shuffling of move-
ment of data. So, Compute Unified Device Architecture (CUDA),
which got its start a couple of decades ago went mainstream, and
today the fastest processing is on graphical processing units or tensor
processing units or artificial intelligence units incorporating a lot of
streaming. Machine learning, with tensor process-

ing of back and forward propagation
in neural network is propagative, and
particularly suitable for the streaming
hardware. Artificial intelligence units
are a higher order perturbation on
that. What is fascinating is to wonder
whether machine learning’s rise is due
to progress in understanding the per-
ceptrons and deep networks, or is it
that the computational platform turned
out to be the perfect medium for play-
ing and thus caused the development of
all the different neural networks.

However, we must still recognize that the non-determinism is
tied to complexity. CUDA and all the graphics applications are still
deterministic computation of probabilities performed on determin-
istic systems and still subject to all the statistical arguments made
to this point. Neural networks, for example, use randomness and
approximations obtained through affine transformations followed
by nonlinear thresholding. Underneath the various approximation
approaches is the probabilities. One is in the end making a proba-
bilistic match to whatever pattern one is trying to figure out through
the weights and the divisions in whatever way one parses, such as
the sequential transformations of Basic Linear Algebra Subprograms
(BLAS) across the hidden layers of neural networks. So all the energy
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considerations still exist since determinism is how the computation
is locally. This holds for NVidia chips with probability calculations
performed deterministically. It is therefore no surprise that these are
thousand Watt chips because of the needs of deterministic compu-
tation. In the next essay, we will explore neural approaches. They
are extremely powerful, useful, and open up new frontiers in com-
plexity despite this shortcoming of high energy dissipation, but first,
we explore using randomness at a simpler level. This lets us under-
stand the fundamental ways of using randomness, and to approach
learning, therefore past as in priors to future and inferencing through
Bayesian methods. This is also applicable to neural networks.

This essay explores this randomness—as a a foundation for
computation—subject through more grounded simple methods that
are useful in edge-of-the-network usage, where being mostly correct
and using much lower energy is useful. This direction grew as a di-
version within the last decade when the statistical limits intersecting
with determinism became too clear to ignore.

Mathematics has much to teach us wth statistical mechanics seen
as an offshoot and probabilities as a way of seeing what is not known
as entropy, whether it is in the old Claussius sense, or in the modern
information sense. Bayesian approach is the evolutionary law that
one has to follow through on state description even if it is states that
we don’t know. Bayes’

While we give exclusive credit to Bayes
for formulating the prior to posterior
description, a significant credit to
Laplace is also warranted. Laplace
had his rule of succession—the Bayes
analog—and applied it to calculate
the probability that the sun will rise
tomorrow, given that it has risen every
day for the past 5000 years.

This next segue emphasizes the dynamic evolution of learning in
the midst of unknowns and in the next chapter exploiting random-
ness using neural networks to tackle the complexity of the physical
world. This essay emphasized Bayesian methods as low energy and
intrinsically probabilistic methods that can also be handled non de-
terministically for computational information processing tasks.

{0, 1}n x f (x)
0000 1
0001 0
· · · · · ·
1111 1

Table 3.1: A mapping of a Boolean
variable x to a function f (x) of the
Boolean variable.

Figure 3.3: Two example circuits of a
bounded problem of finite specification
describable through the corresponding
programs.

Turing machines are hypothetical abstract devices that yield fi-
nite descriptions of algorithms that can handle arbitrarily long in-
puts. Turing placed in machine, therefore an automaton-like form,
Church’s thesis. It instructs us how an algorithm can evaluate func-
tions of every input length. Take the Boolean set, and some variable
x that is being mapped to a function, a simple deterministic calcu-
lation as shown in Table 3.1, in a bounded form. We know this is a
complete specification and one can map this to a circuit form, two
examples of which are shown in Figure 3.3 for some specific f (x).
This is straightforward.

{0, 1}∗ x F(x)
0 1
1 0
00 0
01 1
10 1
· · · · · ·

Table 3.2: An unbounded mapping of a
Boolean variable x to a function F(x) of
the Boolean variable for contrasting to
the bounded problem of Table 3.1

Now consider an unbounded problem for x → F(x) such as of Ta-
ble 3.2. It may be that one can tackle this in an automaton, or maybe
we cannot. Turing taught us how to think about this objectively (see
Figure 3.4) through a tape and a finite state machine that decides the
moves of the read/write head that operates on the tape. This is a
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form of λ calculus driven by a program for calculating the moves of
the machine. A solvable problem halts. It leads to finite descriptions
of algorithms that can handle arbitrarily long test so one may design,
for example, a finite state machine with a certain number of gates, et
cetera, in order to do some computation. Turing machine is a way of
telling how that finite state machine can take on a bigger and bigger
problem and remain finite and tell one how to solve that particular
problem. The Turing method has added looping and a way to reduce
the λ calculus to a machine form. A simple example is that to calcu-
late n!, let (m = 0)! = 1 and then for (n = m + 1)! = (m + 1)× m!.
One now has a recursive relationship in the λ form. One can see
in this formulation the power of the Turing approach in reducing
solvable questions to a machine form, even if there is no way of be-
ing able to tell in general if the machine will halt with the problem
solved. Figure 3.4: A Turing machine consisting

of a tape with information on state, a
finite-state machine that determines
the action (an evolutionary law) and
a program, so a finite memory that
tells the finite-state machine the action
driven by λ calculus.

We view this Turing device as hypothetical abstract construct just
like the use of statistical mechanics as a hypothetical abstract device.
It is a generalized recursive program that allows one to perform λ

calculus.
What has this got to do with randomness, probabilities, and in-

formation processing in non-deterministic way in the presence of
unknowns? Randomness means different things to different people. The name Turing machine has panache.

It is name dropped. I too am guilty
of it by calling this essay Non-Turing
machines. They are non-Turing only
in the sense that the original Turing
construct is working with the Boolean
representation to perform a determin-
istic evolution. A state transforming to
another state using an instruction from
a state machine, which may or may not
have memory, is a Turing machine. It
is just a mapping of state evolution.
There is nothing that says that one
could not do this with probabilistic and
therefore a fuzzy tape and a fuzzy state
machine. Bayesian rule describes how
it should proceed. The AI/ML commu-
nity uses non-Turing and Turing with
abandon, with the original construction
now quite lost. I am reminded of Kurt
Vonnegut’s edict on using semicolons.
`̀ Do not use semicolons. They are
transvestite hermaphrodites represent-
ing absolutely nothing. All they do is
show you’ve been to college.´́

What just happens by chance, that is, was unpredictable. Sometimes
because we don’t have the time or the tools or the resources to re-
move that unpredictability. Sometimes, as with quantum uncertainty,
it is intrinsic not knowing specified by nature.

From an information perspective entropy is what is not known.
Randomness is sometimes equated with or connected to entropy. This
is a fallacy. There are plenty of random things that have low entropy,
there are plenty of ordered objects that have large entropy. A variety
of interesting metal-insulator transitions owe their origin to ordering
or disordering of spin, with some of the order actually arising with
increase in temperature.

The problem of information and entropy and what is not known
are all connected to each other. If one peeks into a fire kiln that is
hot through a small pinhole, all one will see is largely red hot, and
maybe one may make out a shape, or maybe not. But shine a light
from outside source, so a different distribution of photons, and one
can see more clearly what is in the kiln. When one is near thermody-
namic equilibrium, a high entropy condition of lot more of unknown
possibilities, an external energy resource can reveal information.

The hidden an be revealed using proper tools for observation, that
is, information gathering.

Two systems out-of-equilibrium with each other can enlighten.
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The sun, a pretty decent blackbody object at 6800 K, helps us see
things on earth. If one wants to see what molecules are in the air,
just look at the specific lines of absorption and radiation of these
molecules in the incident radiation on earth. This despite us not
really having to know necessarily what makes the sun radiate. It may
be fusion, or it may be composed of gold!

Both cause and chance have entered in this description as did the
classical and the quantum. Causal evolution in quantum is an evolu-
tionary law, no entropy involved, that describes how states change.
The chance of one of many possibilities comes from one of the many
possibilities that the quantum state, whose state function encapsu-
lated the possibilities, is found in. This is now a reduction to classical
information. In the classical description, it is either the large number
of possibilities that one needs to keep track of, or the inability to ac-
tually figure it out through the classical description, that is chance.
Cause is a relationship. Chance is the unknown or the random in-
termezzo between the unknowns. Also, when we compress, that is,
approximate, chance will appear. Entropy is therefore appearing in
multitude of ways in indeterminism. It connects to the probabilism
of inference. Any change in entropy is either acquisition or loss of informa-
tion, therefore involves dissipation of energy.

One can shine light on the what is not known, represented in en-
tropy, and learn and do things with the information. Energy was
involved, probabilities changed, and our information changed. In all
this, what we are doing is figuring out what is caused and what is
chance and how did they interact. So, cause and chance and random-
ness are connecting to each other.

How can one place some objective weight on a picture surfeit with
this subjectiveness?

Kolmogorov, the grand master of probability, stated it best for
information in a sequence of bits is random if the shortest computer pro-
gram for generating the sequence is at least as long as the sequence itself.
This represents the Kolmogorov notion of complexity too. It is a self
referential statement. Often the best descriptions, because of inher-
ent complexity, of the most difficult questions are self referential.

What is life is one of these difficult
questions. Ask a biologist and you will
get many many different answers all
trying hard to differentiate molecules,
cells, viruses, trees, animals, and so
on depending on where they wish to
draw a line, a bit like distinguishing
between the non-vegetarianism of
eating dogs, cats, pigs, cows, plants,
bacteria, animal products, and so on,
or it may be a more pragmatic and
nuanced question and answer session
involving many questions, which has
the entropy-like yes/no question view
towards information content. But that
is categorization and asserting an
objective measure of what is not known.
To me the self-referential, `̀ Life is what
life does.´́ is sufficient to describe the
complexity. It is information and what
is not known both merged in it.

Kolmogorov’s is a self-referential definition of randomness. Pseudo
random numbers immediately fall off from randomness ladder. They
may take long to figure out, but they can be figured out, and new
tools may make that process much faster. They are just stretched out
by elliptic functions. Only quantum uncertainty—Heisenberg’s great
insight—is truly random, and whatever else at the quantum scale
that appears in the real world in an objective way from this random-
ness. We will look at this shortly using superparamagnetism.

But, pseudorandomness can still be useful. It has been deployed in
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algorithms and in communications and in cryptography and safety as
a resource since the dawn of computing. Even the TCP/IP communi-
cations employs it to reduce message collisions.

3.3 Randomness, compressive sensing and neuron spiking

An example of the use of randomness is what one accom-
plishes through compressive sensing. Much of what we work with
does not appear ordered.

Tree leafs, signals that appear and disappear in short times, or
small spaces, et cetera are all sparse vectors. If one samples vectors
directly without knowing what is active and what is not, we will
sample nothing most of the time. As an electrical engineering student
in an early class, the answer would be to deploy Nyquist theorem
and use twice the amount of bandwidth. This will capture rise and
fall. But that answer is silly in locating the object efficiently. Use of
pseudorandomness, that is incoherence, with pseudorandom bit
stream, has a higher likelihood of picking up a little bit of informa-
tion. This is used extensively in compressing representation of large
data, such as MRI images, et cetera. Compression is more efficient.
Take multiple pseudorandom sampling signals and one can use them
to project the data as Ax where x is the basis set. This picks up the
information because the signal itself is not ordered. Using unordered
sampling actually is helpful. There are definitive rules—mathematics
tells us those—and we end up with the l1 norm, instead of l0 or l2
for extracting information.

Figure 3.5: The action potential of a
neuron spike.

This idea of compressive sensing or compressive information
coding, dependent as it is on pseudorandom patterns, is interestingly
exhibited in the neural information system. The action potentials of
spikes are based on electrochemical potential changes arising in leaky
ion channels. The spike trains, by and large look random, and the
signal is of about 70 mV magnitude. The information is embedded
in spike trains, the rates are connected to information, and one can
see how energy and information is near-ideally handled through
statistical mechanics applied to the physical world.

These spikes have thresholds. When the signal rises above a
threshold from summations of signals coming in, the neuron fires.
And then it decays out, following which it gets back to a rest state.
There is much of physical interest in this despite the spike carrying
considerable energy in its mss time constants, and despite the mss,
the information processing once everything—much of which we
don’t understand—is said and done. Ultimately it results in a net low
energy in the inferencing task.

The brain is 10–20 W engine. This is
low by silicon circuit standards, but
high by human standards. The body
utilizes similar power for mechan-
ical work. The brain needs a lot of
blood flow in its vicinity, chemicals to
be moved in, and all the oxygen for
electrochemical processes.
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The membrane signaling process is a capacitance based and sig-
naling through the capacitance-conductance pathway of channels
manifested in the voltage spike.

The action potential in spiking is viewable through the constraints
of thermodynamics and living biology. The action potential moves
down an axon whose simplest model is that of a capacitive mem-
brane across which an electromotive potential exists due to the ion
concentration differences causing the conductance channels to open
and close. This signaling is dissipative. But, absence of signaling
too is dissipative. So, the potentials, currents and times need to be
consistent within the energy constraints. The spiking and the noise
together make this signaling mechanism effective. The equilibrium
potential is calculable from the ionic concentration across the mem-
branes, with K+ dominating, but Na+, Ca+ and Cl− also present. K+

concentration is higher outside the tubule, while in case of Na+ it is
higher inside. The biologically sustainable concentrations are in the
order of few mM to few 100s mM. For example, for K+, Na+ and
Cl− inside/outside these are 5/140, 140/12 and 20.

The diffusive and electrical flow balancing establishes the reversal
potential, which is the voltage across the specific ion channel during
its operation. This reversal potential, for K+ flow in its channel, is

VRev =
RT
zF

ln
[K+]out

[K+]in
=

8.314× 310
96845

ln
5

140
= −88.7 mV. (3.7)

Here, R is the gas constant (8.314 J/K.mole), T is the body temper-
ature (310 K), z is the ionicity (1 for K+), F is the Faraday constant
(96485 J/V.mole) and concentrations of ions is a ratio in identical
units. Cl−, which is not actively pumped, settles at a reversal poten-
tial close to the resting potential determined by other ions. Chlorine
is also highly impermeable. This resting potential, absent any ac-
tivity, is a balance of concentrations and the permeabilities of their
channels, which following the Nernst equation approach is

Vrest =
RT
F

ln
∑i πi[A+]out + ∑j πj[B−]in
∑i πi[A+]in + ∑j πj[B−]out

. (3.8)

The size of the ion (Na+ < K+(0.138 nm) < Ca+), for exam-
ple, and the size of that ion’s pore matter for this resting potential.
πNa/πK < 0.01. The resting potential is maintained by active ion B. Hille, “Potassium channels in myeli-

nated nerve. Selective permeability to
small cations,” J. Gen. Physiology, 61,
669–686(1973)

pumping to compensate for leakages. The pumps—marvels of near-
ideal electrochemomechanical coupling—and the permeability lead
to smaller resting potential, which for these parameters, including
leakage of K+, Na+ and Cl−, are 1× 10−6 cm/s, 2× 10−8 cm/s and
5× 10−10 cm/s. This resting potential calculates to −78 meV. This P. Ronald and J. MacGregor, Theoretical

mechanics of biological neural networks,
ISBN 978-0-12-464255-3, Elsevier (1993)

is in the range that is measured across species and cell types. The
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+40 mV peak—of the order of kBT/e—in action potential is signif-
icant in its role in how noise, spiking and information processing
interact. This spike contains ≈ 0.5 × 110 mV × 10−3 s × 3 pA ≈
165 aJ ≈ 40000kBT of energy.

The simple model then is that there is a membrane, there are
chemicals both inside the axon and outside the axon, potassium is
the one that is really the one that moves, the large sodium doesn’t do
that much, but these ions are leaking and these opening and closing
of the pores is what causes this electrochemical potential to suddenly
change so there’s a reversal potential and that reversal potential is
related to how the potassium moves.

What is most interesting is the following. One can make a small
model of this as a FitzHugh-Naguno (FN) neuron for potentiation
and flipping.

τ↑dtu = u(u− 0.5)(1− u)− v

τ↓dtv = u− v− β + ε sin(ωt) + ζn, (3.9)

where u(t) is an action potential, v(t), a refractory variable, β a bias,
and ζn noise (∼ 30 mV). One can apply the Fisher information
statistics to it. Fisher information is about the connections within

Fisher information is a statistic of
parameterization of a distribution to
tell us how one may capture the most
information in the distribution in the
parameterization. This information
content that is capturable and errors
are then relatable, and that is what the
Crámer-Rao bound is.the data and the continuity of the data. Applying these statistical

methods to the FN neuron says that about 40 mV is the peak of the
signal, and the spike has an energy of the order of 40, 000kBT. This is
more than 20 times what exists in CMOS logic. Even then, then it is a
low energy process for inference. It is so because of how it works is a
mutual information driven process. Maximum information content is
preserved during transformations. Information processing itself then

There is an equivalent of this same
idea useful in neural networks. Neu-
ral networks work best by handling
information bottleneck of this mutual
information preservation best. They
need appropriate hidden layers and
numbers for that process to take place.
If one wants to preserve the most in-
formation in the statistical parameters
of a large data, then maximizing Fisher
information through neural networks
is another of one such common tech-
niques.

is efficient.
This ability to achieve efficiency is throughout us. It is using of the

right speed and techniques in the manipulation to achieve an objec-
tive. We convert nearly 20 lbs of ATP and ADP into each other dur-
ing day to manage the proton motion for all the mechanical energy
we expend similar to the brain’s computation energy. These ones are
low energy 100 kBT steps, slow and steady. Ribosome and the mRNA
translation into proteins, a transduction that is an essential step to
living, happens largely without errors, although our last chapter’s
discussion would say otherwise, since there is also a ratchet mecha-
nism, a mechanism that checks the correctness, and if it is wrong, it
steps back and corrects The slow timing, both in neural and the pro-

There are a few places in computing,
specially the specialized high perfor-
mance computing, where this method
of using checkpoints, and stepping back
and doing again is employed. The brute
force way, such as in the Apollo ma-
chines, which had to handle all the high
energy particle induced errors in outer
space, was to have three computers
compute, and then vote. Democracy in
computing!

ton engines, are state-to-state change with very little irreversibly loss
involved in the process. It is a little more elaborate Turing machine
correcting errors.

With this discussion of randomness, sparsity, the time and the in-
formation coding and the energy transformation in the mix together,
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it is useful to see the power of these tools that we have in nature
and in our own creations that achieve efficiency and low energy and
appropriateness in technology.

3.4 Nature’s use of fluctuations and synchronization

Fluctuations are the appearance of a perturbation randomly.
The eye uses the flickering of the retina—the movement of the pho-
toreceptors (rods and cones)—that accomplish the first-order detect-
ing of edges and in turn allowing the axons to feed the information
to the V1 area of the visual cortex. This flickering is basically the use
of a kernel in a convolution for edge detection. It can also be seen as
corresponding to the Green’s function techniques of response theory.

The perturbation that we have mostly used in the physical exper-
imental work is dithering—a small-signal ordered fluctuation—as
in lock-in techniques to improve sensitivity and reducing noise in
a bandwidth for repeating signals. Analog communications uses
heterodyning for improving sensitivity. All of these are low-power
and low-energy detection techniques that work by reducing the state
space in which one is probing by working in a narrow band. They
use ordered signals.

We also use the random perturbation. Compressed sensing is the
use of linear projections onto random basis just like small-signal
perturbation is a linear projection on an ordered basis. That the ap-
proach is using randomness lets it look at sparse unordered signals
of edges and changes and lets one reconstruct via nonlinear process-
ing.

In all this, the random change–flicker—is different—noise like—
from the wave like continuous method. But, flicker can also be sub-
ject to synchronization in a window because of nonlinearities

We will see this interesting property
in the neural networks that use ran-
domness for achieving robustness and
accuracy and avoiding overfitting.

Figure 3.6: (a) shows Hubel and
Wiesel’s results of a cat’s cortical re-
sponse to edge in the form of a tuning
curve. Horizontal edges had lowest
rate and vertical edge had the highest
rate. (b) shows the functional map of
V1 (Butts (2004)) from the differently
positioned edges being shown to the
eye.
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The most powerful example of randomness’ use in nature is our
eye. The eye uses a tuning curve (a window) to capture the visual
information. An experiment by Hubel and Wiesel dating back to
1959 showed the spike train coding, that is, a tuning power spectrum
curve response from a cat as seen in Figure 3.6. The tuning curve is
a power spectrum that captures the visual information and passes it
on in the form of a spike train to the visual cortex, where it is further
refined. The tuning curve actually peak when it is oriented vertical
and goes down on either side with an angular dependence. Butts—
nearly fifty years later— in 2004 showed this same response in the
functional map of V1 as seen in the (b) panel of the figure.

One of the interesting part of this firing on edges is that it aids
in the energy reduction. If one is looking at a blue sky, it has little
information content. One need not spend energy for each and ev-
ery elemental volume of the sky one is looking at. A model of just
assigning blue to that large volume suffices. But, if there is bird fly-
ing, the eye fires away looking at that edge change, the energy in the
eye and the brain is being used mostly for this information content,
and one can follow the motion of the bird because the brain com-
putational machinery has the capacity to do that with the efficient
coding of firing. This even works at an even higher and deeper level.
When one watches somebody walking away in the distance, one may
recognize and assign an identity by the bearing and gait, and past
memory of this somewhere in the brain through some domain in-
tegration. Yet, after a moment’s passing, we may conclude that it is
not that person because some other information was pulled out of
the brain’s archive. Two different time scales were pulled together for
the inference. All this inferencing has to depend on energy-efficient
techniques matching to the fast and slow needs of the circumstances.

What do flicker and synchronization have in common that makes
them work? Flicker works with nonlinearity. If one has a threshold,
so a nonlinearity threshold, then signals of one side are accentuated
and the other suppressed. The threshold amplifies a difference that
exists at these edges. A random sequence of sensing pulses are prob-
ing these edges, and are efficient since the edges or the signal are not
a repeating functional pattern. Signal may be sparse, but can now
be found through the chance and judicious use of randomness. We
will see an example of this usefulness. It can be used to unveil in-
formation that is buried in, and in Chapter 4 it is being practiced for
similar purposes in autoencoders. Synchronization can be seen as a
way of building energy. Synchronization and flicker put together can

The famous examples of bridge col-
lapses or instabilities with people
walking on them is an interaction be-
tween a swaying bridge and people’s
reaction to it. A large number of people
inputting energy in synchrony with the
swing causes more and more energy to
be coupled to the swinging, and voilà,
catastrophe.

become an even more powerful information extraction technique for
useful circumstances.

This is also convolution, the technique for measuring how self sim-
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ilar two signals are and where they differ. Displacement and detect-
ing change is accomplishing the same thing that the eye’s flickering
is. Except that the eye is using a random basis.

The response curve’s information view can be seen through Fisher
information. Fisher information is a measure of information con-
tent in the parameterization of data. Unlike Shannon’s information
measure that integrates the surprisals in a data stream, the Fisher Surprisal in Shannon way of thinking is

that it is the unexpectedness that relates
to information. If one knows, there is
nothing surprising, and the information
content vanished. When first encoun-
tering this word, an old Mahabharata tail
immediately came to me as I nodded
internally. Yudhishthir’s four siblings
had been struck dead because they
refused to answer them before drinking
water from the lake guarded by a yak-
sha. Yudhisthir too faced the questions
to bring them back to life. One question
was `̀ Kim ashcharyam?´́ (What is surpris-
ing?). The reply, `̀ Death is inevitable
but we take life for granted and live as
if we live for ever. That is ashcharyam.´́
This is Zeno’s paradox, arrow of time,
and information rolled into one and
the same. Yudhisthir did not posit the
natural logarithm of probability as the
surprisal, but that is only an indication
of how much surprisal there is in what
we don’t know.

information metric measures the relationships as

I(p) =
∫

[∂θp(xi|θ)]2p(xi|θ)dxi

≡
∫

[∂xp(x)]2p(x)dx, (3.10)

where one may view the data set {x} with individual elements as
xi = θ + εi. The Cramér-Rao bound relationship

〈ε2〉 ≥ 1
I(p)

(3.11)

tells us the information content’s relationship to the error bounds
of the estimation. The best estimate of the parameter θ then has a
mean-square error of 1/I. Fisher information projects smoothness. A
normal probability distribution p(x) has a variance of σ2 and Fisher
information of I = 1/σ2. If I is small, error is large, so smoothest
p(x) consistent with additional information is the more likely fit.

Figure 3.7: The tuning response curve
and its Fisher information.

The tuning curve seen through the Fisher information view (Fig-
ure 3.7) is.

I(θ) =

〈[
∂ ln p(r|θ)

∂θ

]2
〉

r

=
1
σ2 [ f ′(θ)]2 (3.12)

The Fisher information vanishes at peak and at no firing rate. Large
and low firing rates have low information. It is the angular positions
that needs the most acuity for detection, and they are the the ones
where Fisher information peaks. This turns out to be a highly effi-
cient coding method. It is speculated that this is the way the brain’s
V1−V2−V3−V4 system works.

3.5 From nature to physical

The tuning curve and its edge response is a reminder of the
magnetic memory errors and probability discussion of Chapter 2. It
is the magnetization vector flipping from one direction to the other,
when it should remain in the prior direction, is what we see as an
error. If one was at the peak of the probability curve, no error, but as
one reached the tail edge, errors appear. Errors are surprisal. They
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Figure 3.8: The magnetic domain
as a prototype for flicker behavior
in superparamagnetic limit as the
magnetization flips across hard axis.
(a) shows the probability curves for
the binary states. (b) shows how in
superparamagnetism, one is in the
tails of probabilities causing precession
to flip between up and down ever so
often.

are meaningful information and not unlike what the eye tuning curve
is also speaking to. This flipping happens across the hard axis, so it
shows up as a shot-like, that is, a flicker-like like behavior.

Figure 3.9: The use of superparamag-
netic limit in spin-torque structure to
create flicker behavior by current drive.
In (a), this is shown as a flipping in the
energy landscape. the consequence is
is a junction a response that reflects the
resistance difference between aligned
and anti-aligned magnetism.

This can be reduced to practice using spin-torque current-driven
structures where the free layer is made superparamagnetic as shown
in Figure 3.9. Current drive can be used to modulate the energy land-
scape so the probabilities of transitions can be manipulated. One
polarization—the aligned one—has low resistance and the opposite
alignment increases resistance. So one sees a flipping induced shot-
noise like behavior in the response proportional to the resistance. A
random telegraph signal appears arising in the Poisson low probabil-
ity as

p(k, νT) =
(νT)k

k!
exp(−νT). (3.13)

This corresponds to dwell times in the two possible states (high and
low) with probability

p(t±) =
1

τ±
exp

(
− t±

τ±

)
, (3.14)

where the τs are time constants that can be manipulated by current.
This response is flicker. The spike rates are related to state tran-

sition and an important analog to the discussion of eye’s flicker as a
Fisher information efficient algorithm for detection. We have to make
this barrier smaller and smaller of the order of few kBT so that one
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can induce low-energy flipping back and forth. One way is to make
the structure small and isotropic and then deploy the bias current.
Super paramagnetism is achievable in about 10 nm sizes. It is com-
pact. This is all very low energy, quite unlike the implementation em-
ployed in the thermodynamic tail of deterministic computing. This is
potentially a way to achieve tuning curves that can be modulated.

Figure 3.10: Multiple tuning curves
through multiple junctions biased at
different currents.

Let us see how to exploit this randomness using something similar
to the eye. We can use a number of such paramagnetic junctions
(Figure 3.10), whose weights are modulated to sum and achieve a
signal H(θ) = ∑N

i=1 wiri(θ), where the population coding is achieved
by tuning ri. The ri are the probabilistically-coded composing states
of the net response that can be seen as a spectrum of many tuning
curves as seen in Figure 3.10, each one the curves being of the form

r(I) =
r

cosh(∆EI/kBTIc)
, (3.15)

with Ic as a critical current, and the cosh function arising in the two
exponentials of two dwell states. Different tuning curves are like
different basis sets. From the individual response, to the summed
response, normalized, is

rj,out =
N

∑
i

wijri,in

∴ R =
∑N

j=1 IBrj,out

∑N
j=1 rj,out

, (3.16)

which can be given physical meaning via information-maximizing
construction from a basis. This is the retina model now. We use feed-
back to control the currents and use the Fisher measure to achieve
maximum information content. Classification follows. One has
achieved a function H(θ) that codes the population, one can have
multiple tuning curves using different currents, one cam minimize
errors by maximizing information measure and it is now the tool.

Figure 3.11: Using superparamagnetic
array to train lines in various orienta-
tion and maximizing Fisher information
metric in (a), and then employing it to
test various shapes consisting of shapes
in (b).

Figure 3.11 shows the training using edges in the toy model de-
scribed above, and then using the trained simple network—there is
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no thresholding here, just a basis-based information maximization—
to look at various shapes composed of horizontal, vertical, and circu-
lar edges. Even if simple, the worst case classification error has 69 %
accuracy.

This is very low power because superparamagnetism is in a very
small device structures, the currents are extremely small, and one
can see in this case that it works pretty well. The worst case is the
horizontal one where the crucial information is at a very low state
and therefore probably the errors in minimizing that are also at the
very very low state. Fisher information as an accuracy metric for
parameter estimation has given a method to take advantage of the
superparamagnetism in mimicking what the eye is actually doing
through the tuning curve.

Figure 3.12: Thresholding with a
synchronizing signal and thermal
noise. With high and low threshold
that causes the noise to bump past the
threshold leads to a recovery of the
signal as in (a). If the nose is too large,
a spiking behavior appears as in (b).

To show the power of appropriate thresholding with thermal
Gaussian noise to recover a synchronous signal, here is an exam-
ple that can be understood through the toy model of Figure 3.12. The
square wave is a periodic signal. If it has thermal Gaussian noise it
looks like the signal in the middle panel. If the threshold is suitably
chosen with the noise not too large, an up transition and a down
transition can both be found and a cleaner signal recovered as in Fig-
ure 3.12(a). If too high a noise, one would get a fairly random spike
pattern.

The noise here has behaved like dithering with linear superpo-
sition on modulation bringing out the synchronized signal. The
synchronization is nonlinear and the signal fidelity improved by
nonlinear removal of the thermal noise. It is noise, and its energy,
that aided by making the signal cross the threshold to make the syn-
chronization happen.

The reader may now want to think
through how this toy model also
corresponds to why the bridges swing
with large crowds walking on it, and
why that could be disastrous if poorly
designed or made.

Figure 3.13 is example of signal unveiling using this method. Prof.
Martin Luisier and Prof. Juerg Leuthold were my hosts during 2021–
22 sabbatical leave at ETH Zurich. On the left is a poor picture—
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too dark, but with signal buried and noticeable—, which by adding
Gaussian noise could be made more recognizable. The gray-scale pic-
ture thresholded so that each pixel becomes either dark or light de-
pending on whether it is below threshold or above threshold. Some
dark pixels may become light and some light ones dark. But our
eye performs local averaging over pixels. This leads to a gray-scale
impression despite it being a white or black pixel. With an optimal
amount of noise—it is that noise that is useful—and our eye—it was the
grayscaling by the eye due to its limited pixel resolution, thresholding, and
adding of noise that has improved the visual perception.

Figure 3.13: Prof Martin Luisier and
Prof. Juerg Leuthold in poorly recog-
nizable form—too dark—and then with
Gaussian noise added so that eye’s
pixel grayscale averaging leads to a
clearer image.

I would like to see how this same superparamagnetism can be
employed in random number generation. One needs lots of inde-
pendent random number generators if one wants to compute with
probabilities. Figure 3.14 outlines some of the issues, the problems of
correlations, and an example for how one may create an acceptable
stream. Figure 3.14(a) shows the issue of initiation, that averages take
time to settle, and consecutive bit correlation by pacing bits through
an XOR gate. Are successive bits truly independent? Turns out not
so, which is to say that while the phenomenon is physical, it is not
naturally random such as that arising in quantum uncertainty. But,
by partitioning the stream it is possible to achieve acceptable ran-
domness. One breaks the signal in chunks, and then XOR putting
them together to remove any residual correlations.The first few bits
are highly correlated, and it takes at least 5 bits for the signal to settle
at an objective of 1/2 probability here. If one takes 4 random gen-
erators and puts them through three gates, one still sees issues, it
takes eight generators, and three levels of compositions to obtain a
whitened stream.

Superparamagnetism requires about 20 f J per bit. Good useful
random number generation does require this whitening, but with
some penalty in area from the circuits, it is possible to produce a
white stream as shown Figure 3.14(c). This is now useful. With
Muller C elements, which are flip flops with hysteresis, it becomes
possible to perform non-Turing on-the-fly computing through prob-
ability manipulation. For a simple toy example, take a dictionary
of known words with their associated occurrence rates in spam and
non-spam messages. Associate each word of the dictionary with a
probabilistic random binary generator whose probability of drawing
a 1 is set to different values depending on the presence (or absence)
of the word in the presented sentence. Create multiple binary ran-
dom generators and use Muller C elements for Bayesian inference,
and it becomes possible to classify message streams based on the
occurrences of key words.

We now have a flickering superparamagnetism-based pseudoran-
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Figure 3.14: (a) shows average state
probability following passing of num-
ber of superparamagnetic junction sig-
nals through an XOR gate to see when
it becomes truly random. (b) shows
the testing of randomness through two
compositions and (c) through three
stages of composition of chopped up
bit stream to get relatively clean ran-
dom signal. (Phys. Rev. App. 8, 054045

(2017)).

dom generator, we can create a whitened stream, the junction with
current-driven stream (Figure 3.9 is one example) gives one probabil-
ities when combined with XOR gates, a 20 f J/gate energy, this gives
one an ability to implement inference and computing—a non-Turing
form of computing—using stochasticity as an intrinsic part of the
edifice.

There are other methods too for exploiting randomness for proba-
bility generation. The earliest examples have been based on the insta-
bility arising in inverter biased in its high gain region that separates
the two more stable and broad states. Such a gate driven by ampli-
fied noise will have a response of a stream of highs and lows, whose
averaging with normalization can be seen as a probability, with the
probability magnitude modulated. However, such an approach is
very high energy, far more than that of using superparamgnetism.

Recall the Figure 2.3 used to emphasize how certain pieces of in-
formation are more important than others, and how even just a very
small additional, yet incomplete, piece of data, turns out to be very
informative, and suddenly the situation entirely crystallizes. There is
caution needed with this emphasis. It is in context, and one doesn’t know the
context before the inference. It is a surprisal. Figure 3.15 stresses this by
contrasting it with Figure 2.3. This is an example of a Mooney face.
Strong light places some of the face in saturation and some black.
They may look confusing, but suddenly they become realistic. In op-
posite contrast, they still have a problem with interpretation. We have
information from the past of what faces look like. This is our learned
prior model. We can fill missing information as we did with (a) panel
of this figure, but with reversed contrast, the learned prior model
doesn’t really exist, and the priors cannot be related to the new im-
age. This is our prior model having a say in what the posterior is.

Figure 3.15: Information provided
through data in context, and the data’s
reverse do not provide the surprisal.
In (a) here, a face showed up, but in
(b) with reverse fill, it is not as clear.
Posteriors in the two situations are of
different clarity.

The brain learning and processing information from the data is
multiple steps of coding, encapsulation, and transformations. While
is all mostly physical, as in the kiln viewing till the photons hit the
retina, after that comes another set of transformations, electrochem-
ical spike signaling, piping of this information to the visual cortex,
passage through V1, V2, V3, and V4 hierarchical system that pro-
gressively again transforms and encapsulates in forms that empha-
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size information maximization, but now all this has nothing to do
with photons. It is in a brain-appropriate electrochemical spiking
form and lots of rhythms and cycles are playing.

That this hierarchical building is important and powerful. The This hierarchical building and informa-
tion transformation and encapsulation,
quite independent of what physical
modality it had in some initial stage,
is a very powerful idea that I have
stressed elsewhere. See S. Tiwari,
`̀ Coming of age with the transistor,´́
www.ieee.orgnsperiodicalsEDSEDS-
JANUARY-2023-HTMLindex.html for
the story of Hora and Tempus. In the
brain, this abstraction means effective
sensory fusion. A young ferret, if it
loses connectivity in its vision system
in its brain, can rewire to use the audio
part for partial recovery. Both the video
and the audio have similar information
processing themes, and the brain has it
figured out. Something similarly pow-
erful is happening in many of the new
developments of deep neural networks
that are appearing in so many forms.
From words to equations to deep ideas
that they relate is all information. That
there is hierarchy and transformation
buried in there is most powerfully seen
in our viewing and acting based on that
of ourselves in the mirror. It is trivial
to cut another person’s hair. Try to cut
your own hair and getting all the rota-
tional and translational transformations
right looking at yourself in the mirror.
More difficult yet, look in the mirror
and try to tie a bow tie.

brain’s transformations interfere with the direct actions on the basis
of which a model has been incorporated in some abstracted form in
our brains.

This prior to posterior relationship based on something new
learned is what Bayesian rule and methodology provides a tool for.
Unlike Fisher-like thinking of parameterization of a repeatable statis-
tic, which can tell us parameters, and perhaps also sometimes tell us
how much confidence one may have in them, but only probabilisti-
cally, and in the process allowing false positives and true negatives
to also pervade and cause serious conclusion problems, Bayesian is a
truly powerful way that allows posteriors to be developed

One way to contrast this with the Fisher
parameter statistics is to say that pa-
rameters are not something to be found,
all data leads to newer inferences since
they are new information.

With observations x0, hidden variables xh to be inferred that one
doesn’t necessarily know or recognize, and contextual variables x1

that one knows about,

p(x0, x1|xh) = p(x0|x1, xh)p(x1|xh), (3.17)

where p(x1|xh) is the prior. Since

p(x1|x0, xh)p(x0|xh) = p(x0, x1|xh),

it follows that p(x1|x0, xh) =
p(x0|x1, xh)p(x1|xh)

p(x0|xh)
. (3.18)

In this last equation, p(x0|xh) is independent of what is hidden. It
is a normalization factor. xh can be marginalized out. We have now,
independent of what all can affect and is not known xh a new prob-
ability of what x1 should be expected to be, given the prior, and
observations of x0. This relationship form allows one to maximize
p(x1|x0, xh) by a posteriori estimation of x1. This can be done at
several hierarchical levels to arrive at inferences, such as matching
patterns, which means that it is useful for a large class of difficult
computational problems.

With probabilities, we can now compute with Bayesian operators
manipulating the probabilities. Bayesian multiplication is multiplica-
tion of probabilities, which is the pAND gate with

p(Output) = p(Input1)× p(Input2), (3.19)

and Bayesian addition, which is the pADD gate with

p(Output) = p(Input1) + p(Input2)− p(Input1)× p(Input2)

= pOR − pAND (3.20)
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This to eliminate the 1 probability for both of the inputs, which could
alternately be accomplished in a circuit form.

The probabilistic inferencing can be mapped. Algorithms are pre-
cise description of the state and the state change’s evolutionary law.
Flow charts are graphical representations of this same prescription of
change. The only thing different in probabilistic way of thinking is to
consider these as changes over state distributions, where one doesn’t
have complete deterministic information. So, it is a probabilistic
change. The evolutionary law is the Bayes’ law.

Figure 3.16: (a) shows a graph of an
example decision making in a medical
problem. This graph can be reduced
based on the Bayesian inference map-
ping (without the feedback look which
is an issue for Bayesian circuits) to
the circuit shown in (b). This circuit
has parts that can be broken, without
significantly affecting the response.

As a toy example. take a trivial medical situation: some observa-
tions such as of temperature, a prescription of medicine, looking at
the response and then modify. This is all mappable using Bayesian
probabilities, and as more data accumulates, the inference mecha-
nism improves. The probabilities are in a pulse stream whose average
represents probability. Figure 3.16 shows the implementation of the
simple graph that takes into account the beliefs and the evolution
of the changes in those beliefs. There are plenty of probabilities that
are needed that one can generate and feed. All one has to do is now
average out and obtain the probability at the output for the inference.

What is most interesting, apart from the low power, is the ability
of this approach to become a little more robust to errors. There are
parts of the wiring and probabilistic gates that could be broken, yet
the system will produce a result that will only be degraded, some
only slightly. This is not so in deterministic approaches generally.
This is one of the intrinsic powers of such implementations where
probabilities are central. So to an extent this also works with the neu-
ral networks too. We see in this that the typical problems of decision
making, all based on incompleteness unless highly circumscribed,
can be implemented.

The TCP/IP protocol referred to earlier uses such a probabilistic
method to avoid conflicts in between multitudes of information trans-
mission streams passing through a network. Randomness built in
minimizes the conflicting instances.

Figure 3.17: A hierarchical Markov
chain.

Probabilistic methods can be applied to Markov chains. In Fig-
ure 3.17, a traditional Markov chain now written in distributed state
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probabilistic representation, one can use the Bayes’ rule of updating
beliefs and apply it on conditionals.
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, (3.21)

with the state probability parameterizable (α and β are two probabil-
ity measures related to s and s).

p(si| fi) = αp(si| f i) = αβp(si| fi) = 1− αβp(si| f i) = 1− αβ. (3.22)

This is now a tool for a dynamic system, which can update, and quite
a good way for usage in situations where some error is acceptable,
specially when the timing and decision making does not leave room
for deterministic correctness.

Figure 3.18: A probabilistic Bayesian
inference implementation where the
presence of a fly and its motion is
detected and used to follow the locale.

The eye’s flicker-based detection now can be mapped in a non-
Turing platform as shown in Figure 3.18. The fly’s presence is deter-
mined probabilistically through the background of noise, and prior
and posterior calculations performed to determine the fly’s locale as
shown in Figure 3.19. There now exists a tracking ability in real time..
This means that this mechanism can now be a controller for other
usage where the tracking information can be employed.

Figure 3.19: A hierarchical Markov
chain.

Iteration in Markov chain can also let us do contraction mapping
using iterated functions for various usage. One of image recovery is
shown in Figure 3.20. One started with a poor image, but by iterating
beliefs through the Markov chain, one could keep updating beliefs as
one cycles, and obtain in 104 iteration a classifiable and clean-enough
image for recognition purposes.

3.6 In praise of randomness and indeterminism
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Figure 3.20: Iteration in Markov chain
by clocked tuning to achieve image
recovery.

I hope that this discussion and the different examples have been
able to get across the message that accepting indeterminism, incom-
pleteness, even negative capability leads to many useful directions
and that the approaches of the lowest significant bit relaxation of
deterministic computing, or of just using less bits to approximate a
probability, are of limited utility. Finding ways to use randomness
and probabilities that are low energy makes a whole new spectrum of
difficult problems solvable, where one can start getting inferences in
which one can place probabilistically quantifiable trust. The methods
in the process also become more robust to defects and failures in the
parts from which they are built.

This should not be surprising. Randomness is useful in daily
living. We love forests because of the randomness of the greenery
and the leaves and everything else that makes nature so interesting
and peaceful. Cities are not. Cartesian forms in inordinate amount
induce Le Corbusier prison suffering.

I have never appreciated Le Corbusier.
Initially interesting, a bit of what
makes Lego blocks interesting, but
eventually you see too much order,
less freedom, and then one learns the
defining principle of cities as one of
compartmentalization. Industry in one
sector, offices in another sector, houses
in another sector. This is regimentation.
More like a military marching band
than a Schubert piano piece. Imagine
an ocean, rivers, lakes that are straight
line and edges, or forests as farm
fields of lines of corn. Surprisal is also
aesthetically pleasing.

When implemented with care there is a large set of problems—
most at the edge-of-network in human-centric interfaces of all types—
can be useful. Stochasticity uses low energy, is usually implementable
in small areas, is tolerant to error and becomes progressively precise.
The Bayesian methods provide robustness and the increasing preci-
sion. The edge of the world where low power and energy is desired,
and there are multitudes of tasks, is due for such a change.





4
Science-guided AI/ML: Why, how and usage

One of the intrinsic powers of machine learning and neural networks AI/ML, Artificial intelligence is a self-serving
phrase that I dislike even though it
was coined by some of the people—
Shannon, McCarthy and Rochester—
whom I admire tremendously. it is a
self-serving propaganda obfuscating
the truth. Neural networks is a tool
that the luminaries didn’t see when this
word as a combinatorial computation
driven word was coined to attract atten-
tion. Neural networks are not Boolean
logic of traditional computation im-
plementation with a completeness
framing. Nonlinearity and randomness
is essential to the success at human-
amenable and human-level tasks that
such machines have succeeded at. I
feel far more comfortable with ML/NN
or NN/ML, rather than AI/ML. AI/ML
unfortunately will become the accepted
form. It is now in the hands of silicon
valley. Co-opting of words used to be
a political and management way to
power and money. It is now a very
normal technology business practice.
Open source has been a democratic
and robust useful engineering prac-
tice since its start as an Open Source
Initiative and the introduction of tools
from Free Software Foundation and
the principle of copyleft. ChatGPT is
owned by OpenAI, a nothing open here
company, and GitHub, a repository
for software written by the masses, is
owned by Microsoft. Both are practic-
ing classic mining of all creations and
software of individuals and groups, not
unlike the physical mining companies.
Word smithing first, logic next. Even
scientists and engineers have taken to
it for self-aggrandizement. Just look
up the fathers of any technology, or
the -onic ending that is placed to start
a new field. Science and technology
builds on past works until a moment
of creation comes, and then Matthew’s
principle takes over. So I use AI/ML
under protest. Thought leaders beware.

compared to the traditional science is that it sidesteps the spherical-cow

syndrome. Most of our physical learning constrains a system to a form

amenable to known science by building boundaries that enclose it. AI/ML
employs chance and nonlinearity as an intrinsic part of its computational

edifice. This is the profound aspect of this new approach to computation that

was only being hinted in the early work of gamblers (Cardono, who was also

a noted mathematician), preachers (Bayes, who used chance as a platform

to establish god’s existence), and serious full-time mathematicians (Laplace,

Bernoulli, et cetera). The tension between data-guided agnostic computation

and physical principles guiding information and the evolution of the sys-

tem is unresolved. It is perhaps a mirage, a conjecture would be that they

should lead to similar guidance for a dynamic system since information

in observation and the physical laws must represent the duality of nature.

Science-guided AI and ML approaches give a powerful new tool for tackling

hard and soft causality. Cross entropy, Lagrangians, and Hamiltonians as

extremization approaches using Bayesian principles are complementary, but

with different constraints due to the underlying mathematical principles and

descriptions deployed. We explore this range for real-world open boundary

problems to analyze how sciences-guided AI/ML can be useful in complex

problems such as those encountered in the broader set. For a broader prob-

lem that a human is good at, an example is of classifying or generating a

specific classical composer. For a narrower problem, an example is of inte-

grated design with its constraints of layout, cross talk, speed, and power.

The corollary of this view is that one can extract the physical mechanisms

from the data. Such an extraction shows the power of this information-based

approach in a physical data.

Three years ago, I was on a sabbatical leave at ETH, Zurich. It was
an opportunity to take care of one of my promised Oxford books,
teach to an audience whose mathematics skills I could largely trust,
hike and walk a beautiful country, but also to learn new scientific

Science and engineering in the world
© Sandip Tiwari, (2023)
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tricks at a great world university. I attended three different classes to
explore the intersection of applied mathematics and statistical and
machine and deep learning.

What got me interested in this subject area is its value as a new
technique for building approximations of complex systems even if
one didn’t quite understand how the immense number of give-and-
take interactions, hidden variables and chance events, all play out.

During the world war II, as the train
network of Japan was bombed to stop
the military production infrastructure,
the Allied powers couldn’t figure out
how little it affected for a time. The
Japanese had a model of the train
network system in the form of pipes
and flow of objects. Any network
connector that got bombed could
be shut off and the physical model
showed how the flow responded. This
was a pointer to how movement of
items should be diverted. The flux of
the items, with pressure, fluid flow,
and the objects, could be transformed
to what the train system could do.
Information was in these parameters.
The fluid network was a complex
system that knew how to manipulate
information with the only access
being to to the external parameter of
pressure and what was being put into
the fluid network. Another example
of correspondences of information
flow, information and physical, and the
networks in all their form.

Fokker-Planck equation and its Markovian derivation was the limit of
my understanding of such complexity.

But complex systems have been of interest for ever since there is
so much that cannot easily be explained, so much that is turned into
god’s will. I am reminded of a Neils Bohr story that is in one of my

Even as a child, I had realized that the
larger the lack of knowledge, which
later on I learned to be the condition of
the higher the entropy, the more is the
inclination to postulate the drama as
god’s will.

books at the start of a quantum mechanics discussion. Bohr talks
about a young person in a village who was sent to another village to
listen to a great rabbi and to come back and report. When the young
man—the student—came back, he said. `̀ The first lecture was just
brilliant. Clear and simple. The rabbi understood it and I understood
it very clearly. The second was even better. Deep and subtle. I didn’t
understand much but the rabbi seems to have understood it. The
third was just superb and unforgettable. I understood nothing and
the rabbi himself didn’t understand much either.´́

This is the third of these essays, edgy, where much is not known
and understood, and just like those early days of quantum mechan-
ics, it is one we must understand. One should be very skeptical and very
afraid of using something that one doesn’t understand well enough.

4.1 Black box, not knowing and delusions

With this as a context, I’ll quickly walk through a few of the
beginning thoughts that are on top of my mind related to AI and
ML. This will set the context of what I want to talk about, which is
understanding what is going on in these systems, and how to make it
accurate by using our science principles. It is an attempt at synthesis
and analysis of a new tool, which in turn seeds new ideas that are the
evolving story of this information age.

The first item regarding black boxes is of course the question of
entropy. We know today, and didn’t so necessarily during Claussius’
or Carnot’s time, and why Maxwell’s demon occupied hundred years
of the brightest minds, is that entropy is lack of knowledge. The
whole edifice of the understanding of the world is based on informa-
tion as an increasingly abstracted form of hierarchy. That information
is physical—information’s existence is manifested physically The To Rolf Landauer’s ditty, information is

physical, or Wigner’s it from bit, I have
a corollary, physical is information. I
will dwell on this in Chapter 5 while
discussing our place in this world.

physical is abstracted from hierarchies, protons, neutrons, electrons,
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to atoms, to molecules, to natural and physical bigger objects, to
objects reproducing, or objects achieving capability to observe and
imagine and act, and so on.

This can be confusing, entropy and information together, not
knowing meaning larger entropy. I have had to spend time on this
in my class here too. It is best enunciated by the Czech writer Karel
C̆apek, `̀ This is just . . . entropy, he said, thinking that this explained
everything, and he repeated the strange word a few times.´́ in the
play Krakatit. A child’s room may have high entropy for the parents,
but for the child it has low entropy. The child knows where things
are.

Karel C̆apek also used the word robot in the play Rossumovi uni-
verzàlnìí roboti (R.U.R.); the word itself is from his brother Josef.
Robot, the combining of classical machinery with information ma-
chinery, is derived from robota (drudgery or serf labor). These are
real now, both for the hard labor but also for wars. So is the use of
AI/ML in so many repetitive tasks and selling and opinion molding
for exploitation tasks .

In the decade after the earliest work of quantum mechanics was
done, Paul Dirac1 had remarked `̀ The general theory of quantum 1 P. Dirac, Proc. of Royal Society (1929)

mechanics is now almost complete, the imperfections that still remain
being in connection with the exact fitting of the theory with relativity
ideas. . . . The underlying physical laws necessary for the mathemat-
ical theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact ap-
plications of these laws leads to equations much too complicated to
be soluble. It therefore becomes desirable that approximate practical
methods should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much com-
putation.´́ We are still working on this task and interestingly AI/ML
may have much to offer in resolving the complexity that abounds all
many-body problems and the problems of open boundaries. What
is true for quantum mechanics development, still ongoing now with
quantum computing as a frontier, applies to AI/ML.

Really understanding what is happening in the computation and
having science guide us as a mathematical tool gives physical mean-
ing and physical constraint. This one may argue is what makes it real
and usable since one now can understand the bounds of its applica-
bility. I realize that this has nothing to do with how the guiding has

I am also reminded of Isaac Asimov’s
3 laws in Runaround (1942), amended
later with the 0th law.
1st law: A robot may not injure a
human being or, through inaction,
allow a human being to come to harm.
2nd law: A robot must obey the orders
given it by human beings except where
such orders would conflict with the 1st
law.
3rd law: A robot must protect its own
existence as long as such protection
does not conflict with the 1st or 2nd
law.
0th law: A robot may not harm human-
ity, or, by inaction, allow humanity to
come to harm.

These are constantly flouted in all of
Google-Facebook-Microsoft-OpenAI-
Tesla-· · · enterprise. Asimov, in Foun-
dation and earth (1986), also foresaw this
and captured it in the conversation:
`̀ Trevize frowned. `̀ How do you decide
what is injurious, or not injurious, to
humanity as a whole?´́ `̀ Precisely, sir,´́
said Daneel. `̀ In theory, the 0th law was
the answer to our problems. In practice,
we could never decide. A human being
is a concrete object. Injury to a person can
be estimated and judged. Humanity is an
abstraction.´́

anything to do with drones flying around, automated remote gears
blasting and killing in foreign streets, searches narrowing the phase
space of human beings to very narrow polarized domains, or the
separation of blood-on-hand human feeling versus that from being
10, 000 miles away through a remote AI/ML-guided action, but I hope
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that bringing an understanding lets one work on interesting, chal-
lenging, and important problems that are intellectual and perhaps
useful for society.

All things scientific and technological are double-edged swords. I
am quite aware that ChatGPT, when being asked to choose between
your survival and my own, at least at one stage of development,
chose its own and many early conversation systems rapidly turned
racists.

Our brain too has these conundrums of interpretation since it too
does plenty of transformations under some guiding principles, all of
which we do not understand. Ethics and morality are malleable and
change with time. The new testament replaced the brutal old testa-
ment. Mahabharata and Ramayana have plenty of stories of behavior
by `̀ good guys´́ that are not acceptable today. Oppenheimer quotes
Bhagwatgeeta at the creation of science’s possibly worst contribution
to mankind. The brain has some generalized attractor states if you

Is it the atom bomb or the plastics that
are the worst contribution to the earth
and living kind? I cannot make up my
mind.

look at this landscape optimizing a lot of principles. Sometimes those
principles conflict. Even an Asimov-sanctioned robot may encounter
situations where this conflict will appear. AI/ML is work in progress

The famous one from psychology is
of false choice in the trolley problem
that I slightly modify here. A trolley
is coming down fast on a track, I
am standing on a bridge and have
access to the switching bar that can
move the trolley between two tracks.
It is barreling towards a family of
five with four children, but can be
diverted to the other on which a fat
man is walking. What should I do?
Psychologists call this a false choice.
Philosophers would say negative duties
carry significantly more weight in
moral decision making than positive
duties. No solution. Some ethicists
would say the greater good of saving
more takes precedence. My reaction
would be to get me out of here. I don’t
wish to deal with this. But I sympathize
with the philosophical view. Negative
produces productive friction. It places
obstacles to slow people down and
grapple with consequences.

just as we are.

Google’s AlphaGo winning over the
world’s best Go player got large public-
ity in 2017. But, in 2023, the reverse of a
player beating one of the best programs
also happened. The player had used
an AI tool to find the fault in the other
program.

Intelligence, learning, concepts, connecting concepts over domains,
imagining, imagining possibilities even before encountering them,
love, taste, buzz and how many of the best writers were also drunks,
and so much more, is what constitutes and contributes to how the
brain works and how it manifests itself in different individuals.
Sometimes we are at our best and can see more acutely than other
times. We improve. We also regress.

Brain can misinterpret because of its biases and because of much
that it does is based on prior model. Take illusions. They are con-
flicts created in the brain. Even images can be a source of error in
interpretation. Figure 4.1 shows an example from a psychology and
neurosciences class. (a) shows two identically colored patches on
a checkerboard with the same light incident, but with a cylinder
casting a shadow. (a) shows that the brain infers that less lighting is
incident on the lower patch because there is a shadow. The brain’s
model says that the lower patch must be reflecting a higher fraction
of the incoming light. So we interpret it as lighter even though, as
seen in (b) they are identically bright.

Reasoning, counterfactuals, and other such human approaches are
not yet in the AI/ML arsenal even if large language models and long
short term memory and others of similar ilk have had quite some
success. There are also serious failures just as with humans. Probabil-
ities, when we first encounter them in our learning, for example, lead
to much angst.

The great Erdos at first was not con-
vinced at all by the famous Monty Hall
problem. I ran ChatGPT through the
boy-girl paradox. `̀ `̀ I have two children
and at least one of them is a boy.´́ What
is the probability that the other child
is a boy?´́ At least one child is a boy
makes us rule out one of four possible
cases, leaving the other three equally
likely. But this requires reasoning, or
those who wish to do it analytically,
using Bayes’ rule. Language models
don’t reason, they have learned some
mapping based on what was fed. They
don’t do mathematics quite completely
either. So ChatGPT got it wrong. But, it
answered Monty Hall right. Monty Hall
is something that it has been fed with
before. Boy or girl paradox not so.
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Figure 4.1: (a) shows a checker board
with a shadow on two colored patches
with the same light incident.(b) shows
what the patches are really like absent
the shadow.

So the problem with large language models as of now that we
know is that there is too broad a coverage over all the nuances of
human speech and foibles and all that it has been fed which may
be questionable. There is no editor as such on the information—the
known problem of social media by intention or by finance pressure.
Small models, on the other hand, guided by their discipline where
they understand the niche technology, and have the specialists defini-
tions programmed already, work really well.

4.2 Probabilities, state changes and the great Andrey Andreye-
vich Markov

Figure 4.2: Probabilities of transitions
between and staying in in sunny,
cloudy and rainy states.

The story of probabilities, inference, machine learning

and AI inevitably leads one in pretty early stages to a discussion
of Markov chains. Markov chain is a way to model the changing of
states with probabilities. A working example is that weather can be
sunny (s), cloudy (c) or rainy (r) as seen in Figure 4.2. If it is sunny
than there is a probability of it still being sunny is 0.6 tomorrow, or
cloudy is 0.3, or or rainy is 0.4. Tomorrow’s probability is normal-
ized. Sunny, cloudy or rainy are the only possibilities and add to 1.
With different probabilities, there is also a similar description for the
possibilities if the state of today is cloudy or rainy. These transitions
are captured in a probability matrix that is now shown in Figure 4.2
and captured in Table 4.2.

s c r
s 0.6 0.3 0.1
c 0.2 0.3 0.5
r 0.4 0.1 0.5

Table 4.1: State transition probabilities.
The 1st column identifies the state
today, the rows are the probabilities of
the state tomorrow as identified at the
top of each column. This probability
matrix is the quantitative representation
of the figure.

This is a probability matrix p1 of the 1-day change. What about 2
days? If it is cloudy today, what is the probability of rain in 2 days?
This question is answered by state transitions. First, after one day,
one knows what the probability is of being sunny, rainy and cloudy
tomorrow. And then based on this, one needs to calculate what the
possibility is of ending up in rainy state in 2 days. Cloudy today to
sunny, cloudy and rainy tomorrow to rainy day after tomorrow. The
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simple calculation that picks all the possibilities ending up in rain is

p2
2,3 = [p(c) = 1]×

[
0.2 0.3 0.5

]
×

0.1
0.5
0.5

 = 0.42, (4.1)

a multiplication of row and column. This is a calculation of condi-
tional probabilities given a state. Cloudy today, gives me the proba-
bility of cloudy, rainy and sunny tomorrow, and conditioned on this,
one is determining what the probability of rainy is. 3 terms corre-
sponding to 3 intermediate states. Matrix algebra makes this easy.
One can also similarly find what it will be for sunny and cloudy with
the last column being a different pick from the matrix of Table 4.2.
The net is that the new probability matrix of the possibilities two
days from today is just a recursive product of the present day matrix
and the transition matrix.

This is captured in the collection of p1, . . . , p7 for 7 days listed in
Table 4.2.

p1 =
0.600 0.300 0.100

0.200 0.300 0.500

0.400 0.100 0.500

p2 =
0.460 0.280 0.260

0.380 0.200 0.420

0.460 0.200 0.340

p3 =
0.436 0.248 0.316

0.436 0.216 0.348

0.452 0.232 0.316

p4 =
0.438 0.237 0.326

0.444 0.230 0.326

0.444 0.237 0.319

p5 =
0.444 0.235 0.325

0.443 0.235 0.322

0.441 0.236 0.322

and

p7 =
0.441 0.235 0.324

0.441 0.235 0.324

0.441 0.235 0.324

Table 4.2: Products of state transition
probabilities for 1, 2, . . . , 5 and 7 days.

Just multiplying these matrices gives one a matrix which tells one
what the different combinations are going to be. Note how the ma-
trix terms seem to be asymptoting. In 7 days, although 7 is quite
similar to 5, it is quite different from 1. The sunny staying sunny
changed from 0.6 to 0.41. Depending on the conditional probabilities
and initial states, there is both a fast and a slow change. Conditional
changes cause fast change in the beginning and then the weather set-
tles down to what the normal expectation of the weather would be.
Long term, all one can predict is the averaged behavior one expects,
where today’s pattern is of low significance. In Table 4.2, we have the
same matrix of expectation of sunny , cloudy and rainy independent
of what it is today to three places of decimal. It is changes, is quite
different from the original state.

Markov developed this probability state evolution description to
understand Pushkin’s writing looking for a mathematical under-
standing of the style and order that an author has. A budding great
mathematician, with self belief, he looked at how often consonants There are a number of great stories of

belief and standing up with Markov as
the progenitor.

and vowels appear, how often does another vowel or a consonant
follow another vowel, and other versions of this ordered arrange-
ment. Patterns in choices, of course language centric, this is one way
of pulling apart the random independent choices from the choices
one makes. In writing, and elsewhere, this is a Markov process, an
evolution of the state transitions.

Figure 4.3: Probabilities of vowels and
consonants, and conditional probabil-
ities and joint probabilities for Euvene
Onegin of Evgeny Pushkin.

In exploring 20000 letters of Eugene Onegin, all by hand, for ex-
ample, in the line . . . wastooyoungtohavebeenblighted . . ., he could
start looking for probabilities of vowels and consonants, of vowels
following vowels or consonants, et cetera, not unlike the rainy-sunny-
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cloudy weather description. Figure 4.3 shows probabilities of vow-
els and consonants, conditional probabilities of one following the
other, and joint probabilities of two letter combinations in the writ-
ing. People generally have a certain style of writing, there are also
other language-related, cultural and other traits, and they show up
statistically. It is probabilistic, writing and exposition is complex,
specific outcome may not be predicted, but statistical features, and
averaged properties can. A Markov process and the chain of these
state changes can be extracted through the data. The state evolution and the chain and

transitions can be very complex as
one goes to other domains, but the
fundamentals still hold. Machine
learning, neural networks, all have
Markov chains hiding in them.

4.3 Complexity in time and space. IIT graduates from 1976

Any matter that is complex, not completely definable through
a deterministic relationship—either because of uncertainties of the
different types and/or because of the impossibility of keeping track
of every event causing state changes—is dealt with by probability
theory in sciences. Quantum mechanics and life are both examples.

Science can tackle the expectation statistical feature. An impor-
tant such statistical equation predating Markov that we learn is the
Fokker-Planck equation, which describes the evolution of a prob-
abilistic distribution under the consequences of a stimulus and of
random events. The simplest example being of drift and diffusion of
particles as in motion of carriers in semiconductors or of ink particles
in water or the making of yogurt by dropping and stirring the yogurt
culture. It applies broadly. In an integral form—discrete is replacing
integral by summations—the change from state s′ to state s, occurs
with probability distribution changing as

p(s, t|s′, t− δt) =

[
1− δt

∫
S(s′′|s′)ds′′

]
δ(s′′|s′) + S(s|s′)δt

∴ ∂tp(s, t) =
∫ [

S(s|s′)p(s′, t)− S(s′|s)p(s, t)
]

ds′. (4.2)

This probability change is showing the accumulation of transitions of
states from previous states due to whatever is the evolutionary rule
underlying state changes. A probability equation is describing it in
a general form. For Markov’s Pushkin example, t is the indexing of
letters, s′, s are two states connected through intermediate states s′′.
t is a continuous index here. If I am walking between two points on
IIT campus, if it is the ten minute period between class ending and
new class, I will take longer since there will be plenty of events of my
avoiding other people, or bicycles with people on them, making my
trajectory change, and even be motion less for periods of time. Other
times, I may just follow a very clear Cartesian trajectory. This latter
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is drift in the channels that are allowed, the former was the effect on
this drift by scattering and a diffusive consequence.

This Markov description projects to Fokker-Planck description.
For the particle motion example, and viewed a little more rigor-

ously, one may describe the particle—characters of writing being an
example—evolution as

∂tp = −
d

∑
j=1

∂xj [ai(x)p] +
1
2

d

∑
i,j=1

∂2
xixj

[bij(x)p], with

p(x, 0) = f (x), x ∈ Rd,

∴ ∂tp =
d

∑
j=1

ãj∂xjp+
1
2

d

∑
i,j=1

∂2
xixj

p+ c̃(x)u, t > 0, where

ãi(x) = −ai(x) +
d

∑
j=1

∂xj bij,

c̃i(x) =
1
2

d

∑
i,j=1

∂2
xixj

bij −
d

∑
i=1

∂d
xi

ai. (4.3)

With

J := ai(x)p− 1
2

d

∑
j=1

∂xj [bij(x)p], (4.4)

as a flux—current being a charge flux from the particles being one
example, one has

dtp+∇ · J = 0, (4.5)

which is a conservation equation for the particles. Particles are not
being annihilated in this description, and one also obtains a density
(particles per unit volume) equation in a Boltzmann form of

∂tρ + p ·∇qρ−∇qV ·∇pρ = D∇ · [ fB∇( f−1
B ρ)]. (4.6)

fB here is the Boltzmann distribution, V is a potential, whose gra-
dient causes the drift, and D is a diffusion coefficient arising in the
scattering events. The probability distribution is evolving since state
occupation is evolving under some physical evolutionary law. Parti-
cles in this description are being conserved. So we have a conserva-
tion equation of the flow. We also have the conservation happening
with the evolution of the distribution under some stimulation—a
gradient in potential is a field and scattering events between parti-
cles that are abstracted by the diffusion coefficient. This form has
described the effect in both space and time.

Figure 4.4: The probability distribution
function of 1955-born I IT Kanpur
graduates assuming two locales over
there lifespan predicted from a non-
conserving Fokker-Planck equation
at this point in our life. A few of us
have passed away. The dashed line is
the starting distribution in 1955. The
website shows the animation.

At some point during this last year in a conversation with a
friend—an I IT co-student from my time—on hearing the passing
away of another student, that we all probably have about five more

Decades take a toll on memory. The
person who I thought had passed away,
imagine my surprise, when I met him
in person a few weeks ago on this
campus when students of my years
were here for the alumni gathering.years to live since life expectancy is 72 years for people born in the
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1950s. Classical inanimate particles don’t die. Particle conservation
applies. It does not to us humans. This made this an interesting
problem to explore a modification to Fokker-Planck equation with
the probability distribution disappearing in time, and the toy model
I formed was of being born in India, graduating from IIT, and then
aging with possibilities of two locales, with a possible scattering from
one to the other. Imagine India and USA, with some students go-
ing off to USA following graduation, more arriving subsequently
through jobs or a later decision to pursue more education, or some-
thing else. And even later on, people even scattering back or scatter-
ing forward during the old age. All this can be parameterized which
the scattering matrix modifications to Fokker-Planck lets one do.
Non-conservation can be introduced via a damping factor added on
beyond what is in Equation 4.3. A time evolution of the resulting dy-
namics can be seen in Figure 4.4 of the IIT graduates who were born
in 1955 today. This is drift, diffusion and death for us. The oldest of us
may get past 100 year in age. Markov did this sequence, connection
and evolution analysis with letters and words for a specific person, a
modified Fokker-Planck describes a similar probability evolution for
life of a small enough group of us who have similar characteristics.

The procedure of Markov or Fokker-Planck is written as en equa-
tion, so continuous, but could also be written in discreet state tran-
sition steps as we did, is akin to building of a graph of connections
down which one can percolate. This is the physical that machine
learning techniques are really good at.

4.4 Approximations, uncertainty and transformations for infor-
mation

Graphs-choices-entropy, what step to take next with a layer
across which the information is spread, is at the heart of neural
networks’ affine-nonlinear approach. The procedure of Markov or
Fokker-Planck is written as en equation, so continuous, but could
also be written in discreet state transition steps as we did, is akin
building of a graph of connections that machine learning techniques
do remarkably well at. In the neural network, the information is
spread out in the parameters, and there are many of these, across a
layer in any cut and the parameters are gradually being manipulated
by the learning and how they are changing from layer to layer to be-
come more useful for the task, which is an end multi-dimensional
state of the problem being analyzed. This is a different way mathe-
matically, but is similar to what was encountered with Markov chain
or Fokker-Planck. Markov embodied state-to-state (character fol-
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lowing character in the earliest case by Markov), Fokker-Planck’s
state was position and momentum that ends up leading to drift and
diffusion as emergent parameters in the simplest of examples. The
state of Markov or the position and momentum of Fokker-Planck
are relevant information upon which the related evolutionary law
is being extracted through probabilities or the drift and diffusion
parameters. The neural network is doing such a multi-dimensional
state description in the mathematical parameters of the network. So
neural networks are just another engine of information flow similar
to Markov and Fokker-Planck.

Machine learning can tell us the evolution in space and the non
conservation that the partial differential equation connecting prob-
abilities tackled well in the first order with dissipation. Markov did
the same in transition probability form for letters.

How can neural networks as a machine learning do it? Quite sim-
ply it is aggregation of data input together while keeping information fol-
lowed by nonlinear transformation and doing this again and again across
layers, which is at the heart of all evolution and growth. One can even

This simplistic description, of data
aggregation—data may contain some
or no information, some of the infor-
mation may be degenerate with other,
some of it not—followed by nonlin-
ear transformation, so a finessing of
informational content in the end is
not unlike our daily life. Most of the
time, we proceed linearly, learning
iterative new things slowly at home
and in our schools, which are inter-
spersed with sudden aha moments and
insights and new techniques that we
learn or figure out ourselves because
we have been gradually accumulating
insight—a connection of information
over domains. These rapid changes
are nonlinear. An infant is born with
some number insight, 1 or 2 or more, by
age of two neuroscientists say that we
understand up to 4, and then with an
understanding of numbers, suddenly
we figure out arithmetic that requires
algorithmic knowledge. In human
history too this happened. Together or
more likely from the number sense, one
acquired language skill. Arithmetic,
algorithms, require a description of the
procedure, and the language is a tool
for that. Information transformation is
taking place across the layers, if done
right with appropriate matching as in
filter networks and elsewhere, then
it transforms to a form that then is
rapidly transformable in classification
or generation of something different.
This is not unlike the Carnot cycle.
Adiabatic changes followed by the
sudden isothermal change that causes
move by pressure and volume change
at a constant temperature. Carnot ef-
ficiencies are everywhere in my view, in
our living too. We as a human cannot
function efficiently. We need downtime.
We need time with friends for humor
and discussions. We need to walk in
the woods. We need other interests or
cares as passion. No `̀ work´́ gets done
during these interregnums. But this
heat-like interlude is important to us
being efficient.

argue that as computing capacity continues to proceed, there is abso-
lutely no reason, why the machine capability will not out master the
human capability. For the simplest of examples that brings out major
properties of approximations and dimensionality, no nonlinearity,
consider a linear autoencoder as a `̀ primitive´́ . Figure 4.5 in panel (a)
shows network, where there are nodes at which an input, say x, is be-
ing fed, and an output is being estimated, say x̂, with an intervening
bottleneck in the transformations being affected of z.

x is being mapped to a compressed space of z through a coder
C, which is at its simplest just a linear sets of transformations based
on aggregation. D is another reconstruction decoder that maps z
to x̂. (C, D) is a parameterization, call it θ, so x̂(θ) := DCx. If one
optimizes a loss function `(x; θ) = 1

2‖ x− x̂(θ ‖2, so one is attempt-
ing to match x and x̂, and chooses x̂ to be forced to be the same as
x, that is, an estimate, then z as a bottleneck layer provides an inter-
mediate representation at lower dimensions. Higher order terms—
fluctuations, noise, for example—will be the first to be eliminated.
One gets an approximate identity map relative to the data represen-
tation. A linear autoencoder is making a low-rank approximation
of a linear map F : Rm → Rm as a matrix DC. If it is ideal, F = I,
one has the identity map, but if one has placed a rank limitation, and
F ≈ I. Rank limitation—a dimensionality reduction—has become a
bottleneck. Any linear map A : Rk → Rl now has a rank, which is the
measure of the dimensionality of the min{k, l}.

In a matrix product, the composition of
linear maps, the rank of AB will be less
than or equal to the minimum of the
rank of either A or B. The reverse—a
decomposition rank—M = AB wth
A ∈ Rm×k and B ∈ Rk×n iff the rank of
M is less than or equal to k.

Linear autoencoders are performing a low-rank approximation.
The data matrix x and its approximation x̂ have a `̀ loss´́ -like function
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Figure 4.5: (a) shows a linear autoen-
coder network with a dimensionally
shrunk bottlneck between a coding
(C) and decoding (D) transformation
of input x to an output x̂. (b) shows a
case of forcing input and output to be
the same (here Prof. Sundar Iyer with
Gaussian noise), which results in a less
noisy Prof. Iyer in (c).

which is the normalized sum of squares of the difference, which is
the Frobenius norm. The Eckart-Young theorem in the singular value The Frobenius norm is the matrix

norm, that is, ‖ A ‖=
√
{∑i ∑j aij} =√

Tr(AA†). It should be distinguished
from the Euclidean norm, which is the
vector `2 norm, even if it reduces to it
in the simplest lowest-order case.
Eckart-Young theorem applies to
spectral norms, useful for Frobenius
norm in achieving singular value
decomposition. This is a way to lower
rank matrices as approximations (or
accurately under strict conditions).
Eckart-Young theorem tells us the
singular value decomposition for the
best approximation in the Frobenius
norm.

decomposition,

arg minx̂:rank(x̂)=k‖ x− x̂ ‖2
F = UΣkVT , (4.7)

where Σk is a truncated diagonal matrix of singular values. The
`̀ loss´́ -like function can be minimized within this limitation. There
exists an optimal rank k approximation that can be obtained via
singular value decomposition. This projects to the limits to recon-
struction quality.

A Gaussian noise pixelated picture in Figure 4.5 of a young Prof.
Sundar Iyer, has its noise—the fast spatial perturbations—removed.
Since this is using linear matrix transformations while compact-
ing, via the dimensionality reduction, information is certainly being
lost, but the loss is of the fast fluctuating component. This is pre-
dominantly noise though certainly important content that is rapidly
changing from pixel to pixel will also be dropped. Fortunately, that is
smaller in this image with the rank dimensionality choices made. If there was a bullet—a pixel or two in

size—that too could be lost in such an
autoencoding. But, for normal pictures,
where one is looking for a smoothening
and soothing view, this autoencoding
does remarkably well. It is the infor-
mation in the fast perturbations that is
being approximated out.

4.5 The importance of nonlinear transformations

The linear autoencoder is an unsupervised example of dimen-
sionality reduction in neural networks achieved through an entirely
linear sequence of dimensionality reduction across layers represented
by the matrices for encoding and decoding of C and D. The general
form of the assembly underlying the `̀ coder´́ or its inverse in neu-
ral network form is the perceptron2. It combines the affine with a

2 F. Rosenblatt, `̀ Principles of neuro-
dynamics: Perceptrons and the theory
of brain mechanisms,´́ Report VG-1
196 -G-8, Armed Services Technical
Information Agency (1961)

non-linear transformation.
A simple illustration of the perceptron embodiment can be seen

via the NAND gate of Figure 4.6. This is a single layer neuron that
first sums on weighted inputs and then produces a thresholded
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Figure 4.6: (a) shows an elementary
single layer neural network for NAND
with (b) showing the computation of
the output.

output employing a nonlinear transformation. x is the input, an
additional offset-like input that is the bias—the 1 input here—are
summed with weighting followed by the nonlinear function. Mathe-
matically, we have

f l(x, w, β) = ∑
k

wl
i xk + βl , (4.8)

where ws are the weight and β is an additional translational bias.
In this equation the bias β is weighted by 1 in the summation, and
i is indexing to write this form generally for a multilayer network
with l identifying the layer. It is more convenient mathematically and
computationally to exchange the weight and the bias of the input
(w = 1, the weight and qβ = 1.5 as the real bias for NAND are the
accurate representation) since it is is only the product that appears in
the affine summation. This is what has been done in Figure 4.6. With
these changes and writing generally with indexing,

f 2
i = ∑

j
w2

ijhj, (4.9)

where one of the h terms is the β = 1 and a weight corresponding
to it (1.5) for the NAND perceptron. This equation is expressing
an input h = {. . . , hj, . . .} for the x of the input layer but also for
hidden layers where the neural assembly is stacked. Rewriting of
the weighted bias made this expression simpler computationally on
the right. It is expressing f feeding the ith node from the summation
over the js of the prior layer with weight w2

ij scaling the input. The
output, with a transformation, non linear in general (g()), then is

oj = g2( f 2
i ). (4.10)
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For NAND, the single layer neural network mathematically is

f = [−1 − 1 1.5]

 x1

x2

1

 , and

o =

{
0 if f < 0
1 if f ≥ 0

. (4.11)

The figure shows that one has performed a linear separation on the
input in computing the NAND output.

In statistical terms, this is a linear separation that a non-linear
Hadamard function performed following the affine transformation.
The linear transformation was a dimensionality reduction. It placed
the data in a form suitable for separation. The classification happened
through the non linear transform. Information was also lost in both
steps of this process. It is straightforward to see that XOR function
cannot be obtained through any combination form of Equations 4.9
and 4.10. This is because a linear separation will not work since it
is an addition modulo 2, it is a test of unlikeness, so of asymmetry.
But, stacking multiple perceptrons lets one achieve a neural XOR
rendition. Stacking multiple layers, with intermediate layers only
connected to layers within the network, are hidden layers, lets one
achieve achieve much more complex functions.

Single-layer perceptrons are only capable of learning linearly sep-
arable patterns, that is, a separation by a linear dividing line or a
dividing band in the nonlinearity region. For a classification task
with some step activation function, a single node will have a single
line dividing the data points forming the patterns. Step activation
was a discontinuous separation. More nodes can create more divid-
ing lines, but those lines must somehow be combined to form more
complex classifications. A second layer of perceptrons, or even linear
nodes, are sufficient to solve many otherwise non-separable prob-
lems. The introduction of nonlinearity—a form of making a choice
out of many—not very unlike Golden rule of quantum transitions,
or of human judgment based on past experiences and instincts is the
twist that is essential to the success in deep neural networks of today,
where scale can handle the vast complexity.

The autoencoder was based on just linear transformations. A com-
bination of linear affine transform followed by a nonlinear transform
is a nonlinear encoder. Its usefulness is that it builds an approximate
model of the statistics and in turn, therefore, can be generative. The
autoencoder finessed—deleted unwanted noise in information such
as of the Professor Subramaniam Sundar Kumar Iyer in picture, and
perhaps some wanted one too—because it reduced dimensionality.

The flicker in the eye discussed and used in the last chapter was
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useful for quantification. The flicker introduced by the eye served to
find a threshold for the presence or absence of a signal at the recep-
tor. The process was reversed and a threshold was set that removed
the flicker-like noise that was present in the data. In the affine linear
transformation, the data is being suitably mapped and scaled for the
thresholding nonlinear operation to cause a useful separation. This is
the classification or the logical operation. NAND showed us both of
these viewpoints. Non linearity provided a clever overcoming of the
limitations of affine transformations.

Figure 4.7: Variational autoencoder us-
ing neural network as a generative way
for creating complex distributions by
parameter estimation and minimizing
with evidence lower bound.

This brings us up to the variational form of the autoencoder rep-
resentationally shown in Figure 4.7. In the objectivist view, given re-
peated experiments—an enough-data approximation—one can build
a model with parameters that describe the behavior around which
fluctuations should be anticipated. This is saying that one now has a
sufficient statistic in a set of parameters (θ = {θ}) to describe the ob- An example of a sufficient statistic of

the normal Gaussian distribution is the
mean µ and the standard deviation σ.
θ = (µ, σ)

servable behavior around which statistical variability will exist, with
the variability arising both in the errors of measurements and any-
thing intrinsic to the phenomenon being modeled. The parameters
are our abstractions to model a view of the world under observa-
tion. Multilayer perceptrons—deep neural networks—can be used
as generative methods for creating complex distributions because of
this parameterization. One wants to force the expectations on x to be
what would be expected from z in our autoencoder example. This is
what Figure 4.7 represents.

One is creating a parameterized distribution (z of m dimension)
to look close to what the distribution (x) of n-dimensions is. Mathe-
matically, this is an implicit function discovery of Fθ : Rm → Rn and
inducing a complex distribution over Rn with parameters θ. One is
sampling x by sampling z and setting x = Fθ(z) with the expectations
Ex[ f (x)] = Ez[ f (Fθ(z))]. For this to work, F needs to be invertible
since

px(x) =
∣∣∣∂xF−1

θ (x)
∣∣∣ pz(F−1

θ (x)) (4.12)

A network inversion to obtain pre-image (z 7→ Fθ(z) that is close to
x) is required. Computationally, for the neural network, this demands
an inverse, so a Jacobian determinant, computing of gradients with
respect to θ that needs to be learned. If non-invertible, or dimen-
sionally intractable, it may not be viable to construct the probability
density.

The evidence lower bound (ELBO) allows one to bypass the de-
terministic computation of Fθ. Take the more general pθ(x|z) from
which the marginal likelihood is pθ(x)−

∫
pθ(x|z)p(z)dz. The varia-

tional lower bound relates as

ln pθ(x) ≥ ELBO(φ, θ)
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= Eqφ

[
ln pθ(x|z) + ln

p(z)
qφ(z|x)

]
= Eqφ [ln pθ(x|z)]−DKL(qφ(z|x)p(z)), (4.13)

where DKL(qφ(z|x)p(z)) is the Kullback-Leibler divergence. There
are two models, one where one maximizes with respect to θ for a
generative model given by qφ, and the other where one maximizes
with respect to φ for an inference model given by pθ. The inference
model is performing an approximate model inversion. Stochastic gra-
dient descent can be used, and the method now is similar to super-
vised learning with input z and output x. It has become a generative
model.

The difference between these two autoencoders can be seen in
their way to probability distribution. A linear autoencoder, given
the data, is doing a dimensionality reduction on the fed data. It is
implicitly working towards a conditional probability p(z|x). This
is a discriminative process even if unsupervised. Recursive, that is,
sequential neural networks, or convolutional networks, that is, net-
works that exploit adjacency, or simple neural networks all do this.
Statistical learning approaches of regression and linear classification
also do the same.

On the other hand if one were working implicitly towards p(x)
and joint probability p(x, z), one is attempting a generative process
that is also unsupervised. Recall the example of the question that
if one my children is a boy, what is the probability that the other is
a boy. This is a turning into a higher dimensional vector. What we
tackled by Bayesian graph can be tackled by a neural network.

Variational autoencoders do this, restricted Boltzmann machines
do this, recursive neural networks can be formulated to do this, and
so can generative adversarial networks.

These variational auto encoders is what are generally used in
order to do all the picture transmogrification. They have a rather
straightforward implementation and they can now be made gener-
ative with adversarial intents. The generative model now is using
the the deep latent model features to generate. Generating new faces
instead of reconstruction alone. The generator is being trained to

This generative capability is also the
fake pictures and fake videos that
we should all be very afraid of. The
modern information society has many
such powerful tools for disinformation,
conspiracies, and polarization. It is
not just WhatsApp. In the old days,
even today, it used to be the spreading
of something deeply offensive about
a candidate a day or two before the
election that could not be undone in
time. Generative capability, however, is
also very useful since an implicit model
has been built. This model can then be
used to not store the information that
fits the model and only focus on what
doesn’t fit. Then, one has a way to do
good science and not just collect a lot
of repetitive data that doesn’t inform
anything new.

generate samples close to being indistinguishable from real data. The
posterior classifier can be used to train the generator by minimizing a
logistic likelihood.

4.6 Neural networks

Figure 4.8: A layered generation-
recognition neural network stack that
can be based on variational autoen-
coder.
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An early example of generative recurrent neural network is shown
in Figure 4.8. With a Gaussian noise input,

z = (z1, . . . , zL) with qφ =
L

∏
l=1
N (zl |θl(x), C(x)), (4.14)

where C(x) = U(x)[U(x)]T , one now has a variational autoencoder
that learns and generates.

This is an example of a starting point for transformers whose
further developments—large language models—now appear in the
various generative neural networks including for natural language.

What we have accomplished is a transformation of a collection of
data and its information into symbolic form, and by doing that, it is
now possible to extract and generate. Neural networks are powerful
since the complete process of p(z|x) that would be a large matrix and
that scales polynomially and whose analytics scale exponentially—
think Markov’s hand calculations—is simplified. The implicit cer-
tainly is an exponentially scaled amount so one can not really do that
with parameterized conditionals. This is where neural networks are
very very useful. For example, in the earlier example one parameter-
ized Fθ into this probability function, can now be scaled.

This ability to generate based on a parameterized probabilistic
model created is very very powerful. We use language, facial expres-
sions, absence of response, pictures, equations, and so many other
ways to communicate. They contain information that is being passed
on for the brain to interpret in whatever form it interprets it in. All
these are being transformed. Neural networks are doing that too.

This idea of transformation from some expressive form to an implicit form
is very powerful.

The equation is a mathematical sym-
bolic form for transforming what could
be expressed in language. When the
Hindu 0 (zero)—a place holder—and
the Hindu numeral system (decimal)
became the standard in the last thou-
sand years, the ease of doing arithmetic
became the foundation for algebraic
development and later on to calculus
and now neural networks, all steps
in the process of tackling increasing
complexity.

The neural networks provide the tool to fit a probabilistic descrip-
tion, limited by data and unknowns, of complex phenomena and the
generative recurrent neural networks, of which the transformer is one
example, are a modern tool.

Figure 4.9: A sequenced encoder-
decoder transformer generalizing the
variational autoencoder.

The sequence-to-sequence learning3 was an early successful ex- 3 Sutskever, Vinyals and Le, (2014)

ample of he coder-decoder scheme using long short term memory
networks to achieve a more transformative form. This is shown in
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Figure 4.9. Encode a sequence, for example, a sentence into a vec-
tor and then decode the sequence, for example, translate, from the
vector using an autoregressive output feedback. In the figure, A,
B, C, et cetera, are inputs to an encoder sequence—not unlike the
Markov discussion but more complex in being symbolized words or
even more complex forms for pictures or music score. There is also
the hidden learned input. Then when one inputs something else W,
X, Y and Z in a sequence, one gets X, Y, Z as a sequenced output.
Language translation is an immediate example.

This is what the network did. In the conditional, and probabilistic
parameterized model fitting, one has

p(y|x) = p(y1, y2, . . . , yN |x) = p(y1|x)p(y2|x, y1) . . . p(yN |x, y1, . . . , yN−1)

(4.15)
as a rigorous interpretation. In analytic thinking, this is an exponen-
tial amount of memory in some truth table form where y1, . . . , yN ,
et cetera, are characters, words, tokens, or whatever symbolic form
one has chosen. In a language model, it is the words as some encap-
sulation of characters. The large memory collapses if one parame-
terizes the conditionals in a large neural network, that is, one maps
p(yi|x, y1, . . . , yi−1) 7→ pθ(yi|x, y1, . . . , yi−1) into a parameterized
probabilistic model. Creating one word at a time to create sentences
having sampled conditional is pθ(yi|x, y1, . . . , yi−1), which is a reason-
able continuation. It is autoregressive.

The dark side of the natural language
tools, large language models, that are
receiving so much of the attention these
days is teachers’ testing of students.
What does the student know and how
the student thinks versus what is the
business-like cut-and-paste from the
model’s archive. The language model
has imbibed the web pages say, all the
information we all store in the cloud,
email in the cloud, and that institutions
now force us to do since the immediate
cost is zero or low. This is Google,
Facebook, Microsoft, Adobe, Apple,
and others, choose your favorite now.
This is a another Kabuki persona of
autoregressive.

Reinforcement learning attempts to train a network to produce
actions based on rare rewards. In this process, there is no action in-

In the next essay, I am going to call
this action-reward-behavior and its
real-world manifestation as the two
marshmallows principle.

struction being provided based on some loss function. The important
result is that we are not providing a model of the environment. The
program leans. It is also open system since the model space is enor-
mous, a final reward to define a cost function does not exit since the
environment too reacts to proposed changes. So it a probabilistic ac-
tion choice, where learning is that if the reward is high, it increases
the likelihood of that sequence. While this may reinforce some poor
actions too, but they have low reward trajectories, so the net sup-
presses such action.

Figure 4.10: A schematic view of the
long short term memory. Selective
memory is being maintained for long
term, is allowed to be modified, and
is available for use with short-term
memory to produce responses. This is
unfolding of recursiveness.

This flows into the long short term memory approach conceptually
shown in Figure 4.10. The long part of the memory are the weights
adapted during training and are being stored for perpetual use. The
short part of the memory is the input-dependent memory. So the
architecture maintains long memory times in a robust way for the
short term. It can also be made to forget as also write a new value
which is passed along. This is now at least four important transfor-
mations involving updating and response and long and short. A set
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of equations describing this for neural implementation is

zt = σ(wz · [ht−1, xt] + bz)

rt = σ(wr · [ht−1, xt] + br)

h̃t = tanh(wh · [rt � ht−1, xt] + br)

ht = (1− zt)� ht−1 + zt � h̃t (4.16)

turned into a block representation shown in Figure 4.11 of the en-
coders and the decoders. The block shows inputs, long memory
being passed with neural adjusting and a response with the short
memory based input. A long and short implementation that I have
emphasized earlier as an essential characteristic of physical and nat-
ural world. The approach needs gated units instead of one because
memory is not being preserved as in a recurrent network causing a
conflict with short-term fluctuations. The standard recurrent network
therefore is unfolded into gated units.

Figure 4.11: (a) shows a block picture of
the neural implementation with plenty
of the transformations that are needed
to keep and modify long term memory,
while also acting in the short term
based on long-short response. Selective
memory is being maintained for long
term, is allowed to be modified, and
is available for use with short-term
memory to produce responses as shown
in (b). An incoming sequence feeds into
the recursive arrangement.

We have ended up with an understanding of neural networks
as a model-building exercise that, given lots of data of a complex
system, can show us an approximate model—a multidimensional
multivariable fit—and because we have a `̀ model´́ , tells us given
some input, what should be expected as a result. It quasistatic in that

Because there is an approximate model,
given input, it is also possible to extract
what doesn’t fit. This to me is one
of the really interesting uses from a
science perspective. It gives us insight
into the surprises that a model hasn’t
seen. This is what science has used as a
launching pad to new discoveries and
understanding.

there exists a model that for a given instance tells the input to output
mapping, but that is only dynamic quasistatically in that given a
sequence of inputs it can give a generative sequence. The model can
also be made to be a learning model that can change as more time
and input goes by.

4.7 The physical–informational world and neural networks

The physical world and how we model, develop new ideas
when observations don’t conform to the model, is not that far from
this insight into generative neural networks. This is the reason why
this technique has a power for tasks that have been beyond our reach
until now. The other is that it can explore large and complex data
with multiple causal and random factors.

Most modern tasks that are of interest involve complexity. Phase
transition, renormalization, singularities, et cetera, are all examples
of complexities of interaction across scales where the happening is
nearly simultaneous across structures

The effects are in time and space.
In USA, if a snow storm comes to
midwest—Chicago!—why do flights
between Florida and California get
jammed? They do since both position
and flow is at play. Planes going in
between Florida and California have a
connection to Chicago. Maybe it was
arriving from there, maybe it was going
to go there after the hop, et cetera,
and the network has a whole lot of
such nodes. Take away a node, and the
system can collapse. Like the removal
of a pin in those magical wooden
puzzles that are complex to assemble,
but whose stability depends on one
critical piece that the least thinking
person in the gathering, even if he
understands the consequences, pulls
out. The reverse is also true. A broken
network may begin to flow with just
one connection made. Percolation has
scaling laws.

I view this as a conundrum that has partly come from the conflict
that exists between analyticity, mathematics traditionally prior to to
probabilities and in the abstract notion that pure mathematics teaches
us to completeness where a conclusion is guaranteed with that of
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open boundary conditions of reality. Thermodynamics, for example
with its Carnot cycle or Boltzmann’s H theorem, or quantum me-
chanics with its square-well like problems and others far far more
sophisticated, all employ thoroughly defined boundary conditions.
Reality is open, we don’t know all, we don’t know even what all is,
there are interactions of all different kinds with an environment that
is not immutable. Even the universe is expanding.

Complex problems exist arise in openness, large dimensionality,
large number of interactions, spontaneous events, et cetera, and tack-
ling them in probabilistic terms, that is, getting to a good-enough or
more likely answer, is to give up the guarantees Giving up the guarantees is the central

issue since it is a conflict between what
we do not want to give up, and we can
never know what we gave up if one
adopts a system that cannot guarantee.
It is a delicious problem that Silicon
valley has exploited, just as economics
has and politics exploits it.

When I was young, Fast Fourier transform had just been invented.
It was a very big deal for us since so many problems could be better
tackled, with guarantees, in reciprocal space. Finding fast algorithms
for multiplication (O(n2) to O(n1.59) or O(4.7× n2.91)), extended to
matrix multiplication (O(n2 × (2n− 1)) or O(4.7× n2.81)) , and so on,
so many others, with deterministic background, have been important
to progress in my lifetime. The P = NP problem that has fascinated
computer scientists for a long time reflects one aspect of this issue.
Prime numbers, with so many different connections to Mock func-
tions or Reimann conjecture, or others, and the MergeSort on which Prime number is currently considered

of O(log12(n)) complexity.a trillion-dollar business has been built is of O(n × log n) complex-
ity. These are all important, and good-enough, and non-guaranteed
works most of the time. This is fine for much of the reality and the
open system we dwell in. AI/ML is the tool to this end of the proba-
bilistic non-deterministic spectrum, but one which can also span to
deterministic end. Extremely computationally intensive tasks, tasks
that have in the past waited for progress in supercomputing, which is
now in exascale, become fathomable with smaller scale systems.

How does one actually address this complexity is the question I
would like to now address while keeping the scientific constraints
that we know, and continue on this path of not treating the entire
enterprise as a black box.

Here is one interpretation. Words and language can be associated
within our mind lexically and semantically. In the lexicon of the nat-
ural language, the atomic unit that gets transformed to meaning is
the symbol such as the character of the alphabet or a number. A col-
lection of these form the words or phrases. Sentences, phrases too as
well as words, are built under certain rules, coded into spellings and
the grammar. As a newborn, the number sense thesis4, the hypothe- 4 S. Dehaene. The Number Sense, ISBN

0-19-511004-8, Oxford (1997)sis is that we arrive with an operating system that comprehends 1 or
2, but not much more. By the age of two, we comprehend even 4. But
1 or 4 by itself has no meaning. It is just a symbol. There are 4 boys,
or 4 girls. or 4 apples, or 4 chairs, et cetera. There is no object to be
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called 4, it is a symbol of a count of objects. The meaning of a word
arrives with its use in the language as Wittgenstein says. With this,
one a unit representation and the other a meaning, one has arrived
at something far more in the form of a semantic. One now has a way
of conveying information and knowledge. With the symbol and the
symbol for the object and a collection of words use in the corpus,
word representations have come about that capture the word mean-
ing. We have gradually assembled a path to adding and building an
algorithm for it. Just like sets and groups that immediately come to
mind when we think of 4 boys or 4 girls or 4 apples, or 4 chairs, and
their manipulation, language to has arisen in a similar way, A sen-
tence is an algorithmic representation—built by rules of grammar—to
convey information just as the adding did or sets and groups do.
This is our number sense and either tied to it, or independently, the
Chomsky view of developing language skills. The meaning of the
words have appeared through the use of the language.

I like to think that this description is not that unlike the neural net-
work development. We have used symbolic representations, letters and
numbers in binary form, for example, formed vectors, to denote a
more complex assembly like a word, accumulated their relationship
similar to what algebra does, or equations, and calculus does, and
what grammar does for getting the relationship to have a meaning.
The long short term memory, the language models, see this relation-
ship. Just as we don’t really fully understand what operational form and
mechanism is being employed to represent and manipulate in the brain, that
is, what the specifics are, the same holds true for neural networks, though in
some ways, we understand neural networks a bit more. We can probe what
is going on. But, why this way and its predictability, and certainly how to
make connections across domains is a vast open question..

Mathematics in this sense is a language of description with its own
symbolic notation, just as English is or Sanskrit is, but also that the
meaning of what Professor Sundar Iyer is saying in a language may
be slightly different than mine even if we both convey it in what we
call English and may even use the same words. For that, one has to
hear the inflection, the slant of the eye, the little bending at end edges
of the lips. I may use the word to mean something and it may not
be identical even if we employ the same lexicon although between
Professor Iyer and me, our p and q probability functions of conveying
may have very low Kullback-Leibler divergence.

The implication of these examples of usage of words is that the
corpus of learned word representations that capture the word mean-
ing are being assembled from symbols. Symbols are embedded in
the vector space for the basic representation. The vector spaces’ space
structure, such as angles or distances or something else in that mul-
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tidimensional space is going to relate to the meaning of the word if
you interpret it this way. Now one should be able to see that this ap-
proach should work broadly. Condensed matter physics problems,
the difficult many-body problems or of topology, the problems of sta-
tistical mechanics, of economics, of the many of the agent problems
(not that different from many body problems), are now interpretable,
transformable, and the approach can be seen to start to work broadly.
Language models are associating implicitly a meaning and the rules
of association are being learned during any training.

All this discussion applies to the variety of domains that the brain
is so adept at. So, it also applies to music and the arts and across all
the activities of humans

I am a card-carrying phenomenologist
who worships at the altar of Husserl
and Heidegger. The interpretation that
I have raised is that the meaning comes
from the usage and is part of the cul-
ture. In sciences, one often knows the
bounds of what we should or should
not do, the limits and limitations of
the model, and we are alway willing to
change given contradictory evidence.
This is phenomenology. Let obser-
vations be an important input to our
description.

The power of ML is that with this symbol-word-corpus-meaning
interpretation, one can see that similar model structure should be
applicable to defining, describing, and ultimately interpreting and
creating whether it is in sciences or in arts. Large language models
may be useful to tackle condensed matter problems. There is something delicious in the

language to mathematics jump. Indian
mathematicians ruled supreme pre-10th
century AD. Much of their description,
of geometry and algebra, of zero,
of adding, subtracting, squaring,
negative numbers, et cetera, is through
vernacular language. We had to wait
for Leibniz for finding the calculus
form of the infinitesimal to make
the next jump. We may very well be
moving towards language model again
for it may be a better descriptor of
complexity and openness.

An early illustration of this power was an attempt at building a
model within a model—like we do through our scenario creation
within our brain—to understand the grammar and meaning of mu-
sic. It is possible to make the music audio into a symbol-based word
and essay-like description. Notes, the speed with which the notes
should be outputted in a sound, all the different channels, the musi-
cal instruments, the timing, et cetera, can all be encoded through an
autoencoder, which is the word2vec vectorial representation, fed into a
recursive network that makes the scheme temporal and the assembly
can be classified through a neural network as shown in Figure 4.12.

Figure 4.12: The transformation of
music through an autoencoder and
recursive neural network for classifica-
tion is shown in (a). (b) shows a gated
recurrent form to build multi-note as-
sembly, where averaging over multiple
data provides an increasingly accurate
description.

The principle that underlies this music construction is that words
or characters or notes of instruments are degrees of freedom of the
system in a computational basis which is in some state space. So
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long as one can describe a state and its change, that is, our position
and momentum of classical sciences, then we have a description,
and this recurrent neural network formulation has them. Now one
can infer reconstruction of the state consistent with the data, the
measurement outcomes, and make it predictive. Our attempt at this
said to us that Baroque Bach was classifiable and one could even
generate pseudo Bach, but Beethoven or Mozart not. Of course, this
conclusion depends on the implementation as well as how much data
is available to feed in

Our suspicion was that Bach repertoire
is more limited, and enough available,
to classify. Beethoven and Mozart
ventured far and wide. Perhaps we
should repeat this experiment with
Vivaldi, like Bach from Baroque era,
who Stravinsky said wrote the same
concerto 500 times.

With this preliminary, I hope a reasonable argument has been
made that ML and neural networks are a powerful new technique
now available to us for tackling previously intractable problem. They
stand up to physical arguments and they align with the human and
natural way one tackles information and solves the problems to the
extent our current state of knowledge.

4.8 Physical-science-mathematical correspondences in neural net-
works

We can now proceed to see the correspondences between the
seeming black box like neural network that we are starting to under-

The connection between probabilities,
space, and time in complex problems of
cause and chance should be in the back
of your mind by now. Probabilities—
chance—is not that easy to fathom and
get a good feel for. Neural networks, by
just putting it all analytically, are hiding
this complexity making them difficult
to understand. I illustrate with two
physical questions. One in form of a
question, `̀ John, an American, is a very
thoughtful person, he reasons, he looks
at resources to see what dictionaries
and encyclopedias and other resources
have to say, and then he responds.
Is John more likely to be a librarian
or a farmer?´́ If this is all you knew,
guessing that John is more likely to be
a farmer despite all these attributes is
one of higher probability. There are far
more farmers in USA than librarians.
A deeper one is `̀ How did life appear
on earth?`̀ To this, in my childhood
the answer was Urey’s answer that
ammonia-water-hydrogen-methane
mixture with electric sparks of lightning
created life since protein precursors
were found, or more recently that
life came from thermal vents in the
water where conditions were right,
or a genetics answer that it was the
messenger RNA and the coding of how
ribosomes should do protein synthesis
as a mutating evolution on the planet.
My view is Saganeque. There is a huge
universe. Reproducing entities—spores,
lichens, a whole variety of bacteria,
bacteriophages, and even animals
such as nematodes and tardigrades,
et cetera—can survive in space and
across temperatures. This is a giant
farm with farmers out there in space
compared to the librarians here on the
earth. Life got transported. What I do
agree with is Fermi’s view that we are
not going to see another living species
whose message we receive because
of the consequences of the speed of
light and how long species survive.
We are showing all evidence of this
propensity to self destruct in so many
ways through our selfishness.

stand and how it projects to complex and science-related problems.
It is useful to see at least some of the broader correspondences, of
which Figure 4.13 is a simplistic description. The process of an in-
put to output through the activation and propagation process, where
both the affine transformation step—the matrix multiplication—and
the nonlinear thresholding occurs is both a position and momentum
change. Input gradient is going to project to output gradient. The
affine transformation is a slow and small change, the nonlinear trans-
form will cause a fast or large change. In the neural networks, in the
process of learning through the back propagation and large-scale
data usage, that is, a repeat and repeat, one is fine tuning. By placing
sparsity in weights and activations with a random selection, we are
not overfitting, and just like the real world, also implying that there
is much unknown, whether it is an inaccuracy of measurement or of
incompleteness of what is known. In the convolution networks, one
is practicing a similar behavior by local convolution, which is short-
range, and then following subsampling and more convolutions, also
incorporating long-range changes. Subsampling is again bringing
stochasticistiy. Stochasticity, whether in the networks of type (a) or
type (b), of weights and sparsity, is an accounting of incompleteness,
which is entropy of not knowing. The entire state description of what
exists in the network is a description of microstates and macrostates.
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When we do forward and backward propagation we are practicing
the dynamics of how we fine tune our understanding of the world. It
is learning.

Figure 4.13: (a) shows a simplistic
description of a deep neural network
and (b) shows a convolutional neural
network.

Linear transformation is a `̀ slow´́ change, a reversible exchange,
where no entropy changes taking place. Stochastic pooling, weights
and sparsity is where one loses information content and is also ag-
glomerating information. This is where entropy entered. Microstates
and macrostates are within this representation, nonlinearity is fast
change that’s like Fermi golden rule, where the probability of going
back is miniscule because one has made such a fast change that one
has gone from one possibility to a large number of possibilities. Fast
change forward and backward is therefore the dynamics. The real
world description and the neural network description can be couched
in similar language and description. There are significant correspon-
dences.

Depending on what or how much information one has tied together—
how restricted it is—is going to determine how well the system will
actually work. This is just like the brain getting fogged up by the
shadow that was there on that circle. The same is true for everything
else in these things so if one wants to do inferencing properly one
has to think in terms of how one is going to transform those words
and characters from a physical science perspective. This is the con-
straining of the freedom in the degrees of freedom in the system to
impart it with meaning. This is similar to the tackling of the degrees
of freedom even in the Markov chains of consonants and vowels, or
more extended chains, and these can be applied to Euclidean space,
to spins, to phase space, to Hilbert space, to machine space, or any
other space. Usually we have both the present state and the flow of
the state so the momentum associated with this state in this phase
space notation. They are all also intrinsic to neural networks so it re-
ally works with all that we have to do when infering a reconstruction
of the state that is consistent with the data based on those measure-
ment outcomes. This is no different than what the language model is
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doing.
Look at the neural networks as web of connections—graphs, but

also like a fishing net—with inputs at one end and outputs at the
other end. Flexible structures are more forgiving and less brittle
with their flex passing movement and rates of movement under
force through the links of the fish net. This is one advantage of non-
deterministic networks versus deterministic traditional computation.
While this network structure may be a bit different between the tra-
ditional deep network compared to the convolutions-based network,
there are interactions taking place across layers and perhaps within
layers depending on the net construction, but by optimizing, that
is, forward-and-backward propagation based cost function mini-
mization, one is using the output end to pull or relax, and the conse-
quences channel down along the network finding its more optimum
minimum condition. The network is adapting to its ground state.
This is a minimum that we may call of energy, where the energy as a
metaphor is some encapsulation of the information-related statistical
and thermodynamic description.

`̀ Define energy´́ is a question entirely
nontrivial to answer. We have units,
the energy comes in forms—potential,
kinetic, chemical, nuclear, bond, and so
on with confusions galore. But, it is a
term for describing something that is
exchanged and that lets us figure things
out. There are many such immutables,
exchanging form, but in total staying
constant in our description of the
world.

This brings us to a classical physical picture to a computational
analogy noted in Table 4.3. The analytic description and the compu-
tational description and attribute are all related to the interactions
that occur at short and long range, which either form of the network
described (deep or convolutional) effectively captures. If one thinks
in physics terms, the Hamiltonian is like the surprise, which is the
minus logarithm of the probability since information is additive and
probabilities multiplicative. Not being in the ground state (p = 1) is
the surprise. The Hamiltonian being a second power of the canoni-
cal conjugate is the Gaussian probability. Local interaction is sparse.
Symmetries—translational or rotational or others—are all imple-
mentable through convolution. Making determination of parameters
from the Hamiltonian is the use of nonlinearity and optimization,
that is, softmax or other nonlinear functions, the gradient descent and
backpropagation. The free energy, energy exchange, and the differ-
ences that drive the system are similar to the attempt at matching by
maximizing the Fisher information and minimizing the Kullback-
Leibler divergences. This is the bringing together of the distribution
functions. Operators and features correspond. Extracting a feature
in the network is the analog of the operator operating on the state
function to give an eigenvalue and returning the eigenfunction. Iden-
tifying an object such as leaf in a picture is associated with an opera-
tion in the network that finds the attractor state identifying that leaf.
Leaf corresponds to the eigenfunction and the different objects in the
picture are different eigenfunctions composing the state function. So
one can see that the languages may be different but they actually re-
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late to each other. Looking at these informational approaches in two
different languages is actually very very useful since it gives meaning
and insight. For example Shannon tells us that average information
content of the a summation ∑ pi log2 pi is one of summing up the
different surprisals and how often they are likely to occur.

Physics Computational

Hamiltonian − ln p (Surprisal)
Hamiltonian in 2nd power p (Gaussian)
of canonical conjugate
Local interaction Sparse
Translational symmetry Convolutional
Extracting from Hamiltonan Softmax, gradient descent,

backpropagation
Free energy difference Fisher information,

Kullback-Leibler divergence
Operator for observable Feature

Table 4.3: Analogy between physical
analtyics and the neural network
computation.

Quantum, statistical and information mechanics and their play
through neural networks shows all these different correspondences.
The working of neural network is a mechanism that is optimizing the
information representation through different transformations. It is
achieving that through the forward and backward propagation given
the constraints that have been placed on the network, The number
of hidden layers, the connectivity, the nonlinearity, the stochastic
optimization, the loss functions, et cetera, all determine how well it
approximately represents the physical situation.

Information underlies this representation. Entropy as a measure
of information comes in many forms because it represents what is
not known, and there are many information-containing properties
including those that we don’t even know exist since they are among
the unknown.

Shannon’s channel-based viewed of information, for example, of
bit stream is a negentropy of HS(X) = −∑i pi log2 pi for averaged
information content. If all bits are known, this is 0. If one bit is not
known, for example, say in {00000?00000}, then its probability for
random 0 and 1 is 1 b. For this same stream, the Fisher information is

I(θ) =
∫

[∂θp(xi|θ)]2bp(xi|θ)dxi

= ∑
1
p

log2 p
2∆xi

= 2 b. (4.17)

Why 2 and not 1? Fisher is informational view of position and mo-
mentum. Shannon’s of a bit by itself. Fisher’s is of a bit in context of
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other bits because of that variation with the parameterization of the
distribution. Fisher information is particularly useful to view neural
networks in physical terms therefore.

Figure 4.14: The 2d scaling in sampling
needed to adequately represent d
degrees of freedom. For example, for
up and down some parameter that is a
degree of freedom, a volume with 1/2
its length tells us which part it is in. Go
to a square, now the sampling volume
decreases to 1/22, to 1/23 for a cube.
This is 1, 2 and 3 degrees of freedom
progressively reducing the sample
volume size. The sampling needs to
increase as 2d to adequately sample a
d dimensional space. Correspondingly,
the convergence rate will vary as 1/

√
N

corresponding to the Gaussian spread,
to (ln N)d/N.

The one complexity with neural networks is of reasonably repre-
senting the degrees of freedom, which are immense. This is a dimen-
sionality problem. It is why neural networks have to be so immense
to be representational of the degrees of freedom of a complex sys-
tem. As Figure 4.14 argues, the sampling has to increase as 2d to
adequately capture the terroir of the physical system being modeled.

Fortunately it turns out that utilizing randomness helps—just like
flicker noise helps with the eye—to figure things out. The second
complexity is related to information aggregation versus partitioning.

If one looks at the mutual information in an aggregated collection
one can write it in terms of an expanded Taylor series form as

I(x|yk) = H(x)− H(x|yk)

= −
k

∑
i=1

∆H(x)
∆yi

−
k

∑
i>j=1

∆2H(x)
∆yi∆yj

− · · ·

∴ I(x|{y}k) >
k

∑
i=1

I(x|yi). (4.18)

This is the mathematical basis of Galton’s estimate. Aggregation of
independent information—with pieces conditionally independent—
has equal or more information. Sampling helps. More than the self
information of one measurement is obtained through the collective
measuring. As an example, information gain about x from a pair
( y1 and y2 ) is the sum of independent mutual information and
an additional term. This is the correlation between y1 and y2 . The
equation is also telling us that with more measurements yi, there are
now higher order terms. These are the short and long range correlations.

The digital gates NANDs, NORs, XORs are aggregators. They are
nonlinear. If one has them with multiple inputs and multiple corre-
lations, we have a neural network. Viewed this way, neural networks
are a generalization over correlations that have now become feature
extractors. The nonlinearity in multiple inputs, in presence of mul-
tiple interactions across the inputs that may look like multi-variable
correlations that are nonlinear and are viewable as a Taylor expan-
sion, are captured in a generalized way by stochastic assembling of
affine transformations and nonlinear transformation with hard or soft
thresholds.

By giving up on guarantees, completeness and at least currently—a very
superficial understanding of the black box that are the neural networks—
we have an approximate guess methodology for complex problems. This
is essence of the transformation from the past to the future and the
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incompleteness therein. Neural networks are just letting us to do
the same for what may very well still be the past using the same
methodology.

The basis of all this is in stochasticity (errors and surprises) , lin-
earity (slow) and nonlinearities (fast), renormalization-like coupling
across scales, and an acceptance that past (data fed in) is a good
representation with once-in-blue-moon rare events not part of the
schema. In this the neural networks manage to

• Dimensionality reduction captures approximation of information
critical to inference.

• The exchange from degenerate states is nonlinear and statistical.

• Noise is unknown information. Take away a data, the collection
is noisier. This makes noisy information useful as the stochastic
resonance showed.

• Correlations are exchange. Higher moments are longer-range
exchanges.

• Noise helps by emphasizing correlations. So do hidden nodes
where convolutions happen.

• Correlations are also a measure of order. So is mutual information.

• Adaptation accounts for incompleteness of information.

• The probabilistic representation translates in this interaction

– Nonlinearities and phase transitions.

– The natural world as a play of chance and causality with the
order appearing because of the nonlinearity.

The dimensionality reduction—within limits—captures the approxi-
mation of information critical to the inference that we saw in extract-
ing Professor Iyer from the sea of Gaussian noise, and exchanges of a
degenerate ensemble since the process is nonlinear, statistical, and the
neural network is a particularly adept tool at being more representa-
tive of probabilities by working from previous data. Nonlinearity have
helped partially overcome errors of measurement and noise and statistical
distribution of nature.

Simultaneously, noisy information has been useful as a stochastic
input that, with avoidance of overfitting, can exploit stochastic reso-
nance. The stochastic resonance of the previous essay exploited corre-
lations. The higher moments correlations arising in higher moments
are long-range exchanges. Noise helps by emphasizing correlation, so
do hidden nodes where convolutions happen. This is why the hidden
network’s hidden layers are so important.
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Correlations are also a measure of order so they also map to mu-
tual information. Adaptation accounts for incompleteness of in-
formation. It is adaptation that nonlinearites bring in the ability to
overcome what is not known of higher moments. Phase transitions
have this behavior in the natural world, and the neural networks have
the ability to capture these renormalization capabilities.

We will look at some representative examples in order to fit and
show the correspondence in the mathematical and computer science
construct within the natural context.

4.9 Information and physical guiding in neural networks

Since all these themes end up in a distribution of possibilities
represented by probabilities, it behooves us to make sure we under-
stand how probabilities constrain and what is being used towards the
inference in the optimization by the neural networks.

The first of these is an early inculcation of the maximization of
entropy. Thermodynamics claims that this is the end—a way station
in the Feynman view—of a closed system. Neural networks are not
necessarily, nor is nature as far as I can tell, a closed system.

We also grow up thinking minimization of energy, which is cer-
tainly a noble objective, but we know that that this is a slow state-to-
state change prescription with connotations of Zeno’s paradox.

The maximum likelihood proposition just says that if one has a
distribution p and a model q distribution, what we are attempting to
do is to bring them together under some loss-related criteria. Max-

The loss-related criteria can be multi-
tudinous. One may want to work with
sampling of one distribution over the
other, or Fisher matrices, or place physi-
cal constraints, or so many others more.
Our interest here is to argue that neural
networks under statistical constraints
should also be beholden to physical
constraints whose laws we, so far, know
hold true, and believe to keep holding.

imum likelihood therefore is quite closely related to the peak of the
distribution and bringing them together.

The maximum entropy proposition asks one to start with the most
consistent assumption of what the distribution is going to be like
without assuming anything except what has been given. Quite often
this is very difficult to interpret but this is what maximum entropy
truly means.

Minimum energy is often how we pursue solutions in physical
sciences to find the most probable, and in turn, the final end stable
state. Minimum energy state recovers to itself under disturbances
since the second gradient in energy vanishes for conservative forces.
The first gradient is a force, at least for conservative forces, that
brings the system back. All the statistical elaboration with parti-

Herein lies an important problem.
Conservative forces are not necessarily
the norm. The world may not be an
open system. A confined system with
boundaries too has lack of information,
that is, an entropy, and so much that
is not being tracked, so minimum
energy may be a ground state but is not
necessarily the state that a system will
find itself in under stimulation.

tion functions is mostly related to working with and inferring from
minimum energy.

Within these different methods is the conflict of over-fitting. If

I remember an incident from my
graduate student time. After a long
and difficult research experiment,
two data points had been generated.
The speaker put those data points up,
and since it was an energy of some
parameterization plot, drew a straight
line on a plot through those points
and an imagined point at absolute
zero. The question immediately came
up, why a straight line, and why the
point at absolute zero. Of course, it is
possible that there are phase transitions,
that is, energy-exchange processes,
and different activations. Models are
just models. Useful, but wrong once
one starts to generalize from a limited
region of validity.

one over fits, one has poor generalization. This should be obvious
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I hope Also, I hope don’t have to explain that there are conflicts of
priors that can take place also. The path to a state too matters in a
real-world system.

There exist two issues in here. How does one organize the method-
ology to extract maximum information in the presence of fluctuations
and noise and minimize failures?

Energy, entropy and inference have a multifaceted relationship
that shows up in so many different ways from phase transitions, in
reversible processes, in irreversible processes, or in the variety of
mechanical or information engines. Figure 4.15 shows a summary
of the probability behavior in a 3-layer binary classification of the
CIFAR− 10 image subset.

A very productive test creation of
the modern times is of setting up up
a problem that different algorithms
and methodologies can attack and
compared through different measures.
Image recognition, charting a course
through autonomous driving, solving
some important problem, et cetera,
are not unlike Hilbert’s 23 problems,
or millennium prize problems. They
provide a common equally-known
framework for all to attack. The current
autonomous driving theme, or of
drones as a derivative from that, are
direct descendent’s of the DARPA
autonomous ground challenge of 2004.
Many such tests exist for checking
the efficacy and speed of algorithms
with respect to each other for pattern
recognition tasks.

Depending on how much and how one adds noise in the gradient
descent shows the nature of not knowing in inferencing. Figure 4.15

is an encapsulation of estimation in CIFAR − 10 image subset with
added noise experimentation. White noise is poor, adding no noise
is slightly better at increasing the probability of classification, and
stochastic approach sharper with a higher informational entropy.
The stochasticity aids in avoiding trapping in local minima, as also
in following a path that is going to look out for a minimum over a
larger generalized coordinate. Figure 4.15(a) shows the probability-
entropy relationship, and Figure 4.15(b) an interpretation of why
stochasticity—a Guassian fluctuation intervention—is helpful.

Figure 4.15: Representational summary
of a 3-layer neural network classifying
the CIFAR − 10 image subset. (a)
shows the probability versus entropy
in the classification, and (b) shows how
in a generalized coordinate picture
the stochasticity helps in the descent
and finding the minimum avoid local
minima and favors global minimum.

Nonlinearities are a means to compression. Linear transformations
are a different representation for the same information, unitary trans-
forms, rotation, and so on. In a deep network there is a fitting and
compression taking place when one works through the network. The
tanh function with its strong nonlinearity concentrated around the
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origin, means that when passing through one layer the data is un-
dergoing a fitting and a compression. Stochastic descent emphasizes
broader maxima by the double-sided nonlinearity. Noise brings out a
wider minima and gets one to the end calculating much faster.

How does the information evolution take place in the network?
One interesting way of looking at that evolution is to look at how that
nonlinear function is being being put in: the nonlinear function as
a tanhc or a ReLU (meaning stay zero and then evolve with a first-
derivative discontinuity) or a softmax. The hyperbolic is a smoother
function around 0 so it actually has a bidirectionality associated with
it and one can see that if one uses a tanh hyperbolic function one
gets the information content staying and evolving evenly distributed
across the layers. Not so with ReLU. ReLU works best in the final
layer where the collapse to classification is desired.

In one looks at the self-information content, agglomeration takes many
iterations before building up, so clearly having it as double sided is more
useful.

Given that we are discussing information in provided data, and
even as a human we extract different informative extracts from what
we observe, it is interesting to look at neural networks as a device for
what it extracts—its classification—in response to created situations
and also to see what goes inside. This may be instructive to under-
standing how information is maintained within its structures, the
agglomeration, the decoding of mutual information, and its way of
disambiguating. Surely noise—or really, fluctuations, or existence of
different shifts around observations, et cetera—plays a role, helpful
as well as what we learn in physical sciences, mostly unhelpful.

For humans, given sufficient signal-to-noise, this is ambiguity
where we look at adjacent relationships to disambiguate. There are
also circumstances where we just cannot do it. We will look at a few
of these to see the connectivity and noise/stochasticity connection.

100 784
nodes nodes

7 98% 62%
9 1.5% 20%
7 30% 9%
9 67% 67%
7 54% 59%
9 28% 18%

Table 4.4: 7 and 9 classification to assess
disambiguation using 100 and 784
nodes. The table is in the same order as
the figure.

Table 4.4 shows the first of a contrived example to explore this
condition in a neural network using the MNIST data. Increased
ambiguity was introduced in a contrived way by adding rectangle in
the 28× 28 pixel array and the results summarized in the ambiguity
resolution between 7 and 9. Two different number of hidden nodes
are used in a 3-layer network, that is, a simple network. A human
is likely to interpret these mostly as 9, but the network with one
hidden layer does a pretty poor job. The last case, perhaps the least
troublesome of the three, is where 784 hidden nodes gives an 18%
result. Looked from afar, by and large, these are all 9s, but not so
to the neural network. Looked from up close, these will give the
humans the ambivalence similar to that of the neural network.

Figure 4.16: A deep network where
additional layer bypassing links are
randomly placed wiit a power-law
probabilistic relationship akin that of a
small-world network.

Humans and a few more mammal species have what are called
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spindle cells—von Economo neuronal links—where long connections
appear in the folds in the brain. These are bypass links connecting
laysers. Something similar can be done with multilayer networks as
shown in Figure 4.16 by jumping hidden layers. The introduction

The programming of bypassing layers
in a back and forward propagation is
not trivial. It breaks what makes the
mass-integrated-scale manipulation that
has been so successful through princi-
ples of stream processing. It breaks the
simplicity of matrix multiplication that
JAX and other such developments have
so successively exploited. This is again
the software-hardware cycling that has
existed over the past so many decades.

of bypassing random links has a major consequence summarized in
Table 4.5. The 9 is now recognized quite well. The neural networks as
practiced right now are likely quite elementary models.

100 784
nodes nodes

7 12% 62%
9 65% 71% was 20%
7 12% 2%
9 75% 91% was 67%
7 11% 8%
9 73% 88% was 18%

Table 4.5: 7 and 9 classification with von
Economo layer bypassing neurons. This
table is to be compared to the previous
one (Table 4.4). The last column points
out the improvement.

Now consider an interesting example of context-sensitive disam-
biguation. In the Devanagari alphabet, there are three characters,
kha, ra and va, where if ra and va follow each other they look pretty
much like kha. One quickly learns from context what it is. This is
the Markovian twist to the human mind. But, if one is only feeding
what looks like one character at a time, not a character in a word in a
sentence, or pose a two or one character identification, as in this ex-
ample, what should one expect to classify? The first suspicion is that
it really will be related to distancing of the characters and the sec-
ond will be of some higher order rotational convolution effect since
the kha will have a tendency to be more closely tied in the two ver-
tical orientations of the character. Again, the introduction of jumps
in across hidden layer improves identification as seen through Fig-
ure 4.17.

Figure 4.17: Devanagari for kha versus
ra and va as three characters of the
alphabet.

It is fun to see that this simple translational and rotational argument—
a physical view—holds ground, or at least not rejected, as seen in
Figure 4.18. The use of von Eckonomo neurons provides considerably
more accuracy. Stochasticity and connectivity and how the informa-
tion moves and is encapsulated across the layers, preserving long and
short range connections is the message of this model experiment.

This brings up to the question of information, and how it is being
maintained, manipulated, and what particular schema of connectivity
preserves it the best as one moves across layers before the final clas-
sification from the information in whatever is the optimal form it is
encoded in the neural network. In the example of Devanagari charac-
ters, this was a translation and rotation at the character level and the
context at the more collective level in the sentence.

Figure 4.18: The accuracy of recogniz-
ing kha versus a ra followed by a va
Devanagari for kha versus ra and va
using different percentges of bypassing
links.
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The number 8 is an interesting example that collects a rotating col-
lection of points forming a curve that we identify with 8. How is it to
be viewed informationally? One way is to think in terms of correla-
tions, pair wise and higher, and the next is to explore it in a mutual
information view through the different measures of entropy. The
various unusual symmetries in the character 8 are buried in these
measures to different extent. This computed results are shown in Fig-
ure 4.19. The long range correlation of symmetry is not sufficiently
distinguishing. The short-range matters as the Renyi and Fisher en-
tropy show. A completely checkered pattern will have a flat output
in the bipartisan locale coordinate. Renyi and Fisher keep a lot of
information together, which the Shannon measure does not.

Figure 4.19: (a) shows the number
8 character being analyzed, (b) the
mutual information in Cartesian pair-
wise calculation of left/right and
up/down, (c) is the Renyi entropy and
(d) is Fisher entropy.

The statistical view of figuring it out or not is that if one has not
previously seen some behavior in the statistics—individually or in
context—-then one should of course not expect it to be predictable
within a model with its tolerances. There are fluctuations for a va-
riety of reasons, and even if the transition to the current state was
unexceptional, it will fit to the model within those error bars. But, if
the event is not part of the model, Poisson events for example unless
there are sufficient statistics for that, one should not expect any bet-
ter. The subjective view finesses this by asking one to change one’s
expectations. The existence of a not-before-seen event is a contradic-
tion with repeatability expected of a frequentist or objectivist view to
statistics.

Physical laws, with determinism and randomness and resulting
non-determinism built in, are a way to make a model, guided still be
observations, that captures all the short, long, the often, the not-so
often, and all the other connections across all the domains within the
constraints stated for the validity of the physical law.

Bringing these two together is one way of bringing more accu-
racy to predictability, both are grounded in observations, but the
physical—the science principles that must hold regardless of the
mathematical undercurrents of the network—must hold true. This
places constraints that are the principles that one has found to hold
true over a wide variety of domains. This brings together all the dif-
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ferent disciplines of sciences that establish the immutables within
the constraints of their axioms that we have found to hold. It may be
probabilistic—the Kolmogorov-axiom-based edicts or of number the-
ory or geometry or others—but it must also be beholden to the rules
of principles of action, summing of the paths, relativity, electromag-
netics, all the different conservations, and all others that come from
scientific fields.

Placing both statistical and physical constraints within the neural
network—done right—should make it more accurate in predicting. It
helps tackling and increasing robustness in predicting what cannot
be generalized form limited observations.

A good example of using neural network in this way is quite an
old story. The European laboratory CERN produces in any complex
experiment an incredible amount of data from its large number of
sensors operating in time and three dimensions. It builds up to tril-
lions of bytes of data per hour. One cannot store such data on the
fly and if one attempted to it will absorb all the world’s resources.
The clever out from this is to actually have a model, look at the data
in real time for what does not fit, and store only the data that does
not fit. One can do that by designing application specific integrated
circuits coupled to field-programmable arrays and storing away in a
hierarchy of memory and storage media.

So an appropriate way of trying to figure this out—coupling the
statistical observations to the constraints from some physical (or our
version of it) laws—is the challenge. This means knowing enough
from statistics and recasting the physical in terms that the neural
network can understand. Guiding both is the information, the flow
of information in the network, and the flow being constrained by the
physical constraints on how the information cam behave. Another way of saying this is that

the information is being exhibited in
various forms—within the degrees
of freedom afforded by the network
where the last layer may have the least
since it is demanding classification–
and the physical law is placing a
constraint on the flow of information.
This is not unlike the speed of light
limit on flow of information, which is
embedded in the Cramér-Rao bound
if one looks at the related physical
equation. A discussion of this can be
seen in the Oxford Volume III, Chapter
2, of Semiconductor Physics.

Statistics need to be sufficient. A statistic T(x) is sufficient for a
model with its unknown parameters (θ) if no other statistic from the
sample space can provide additional information on the value of the
parameter, that is,

p(x|T(x), θ) = p(x|T(x)). (4.19)

This is equivalent to

p(θ|T(x), x) = p(θ|T(x)), (4.20)

which states the conditional probability of a parameter is now inde-
pendent of the data, and

p(θ, x|T(x)) = p(θ|T(x))p(x|T(x)), (4.21)

which is a statement of statistical independence. A pithy to empha-
size the nature of sufficient statistics is that what has not been seen
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cannot be generalized. The assumption is that no other statistic from
the sample space adds to information.

If one thinks of this situation in probabilistic terms, the learned
function has information in the small probabilities in soft targets. The
soft targets that have the highest entropy, that is, of lack of knowl-
edge about them, then it is their observation that provides the highest
information for training. The hand-written numbers 2, 3 and 7 where
they appear confusing to us with each other, are so because their
low probability tells us that there is rich similarity in the structure,
and it is this similarity that is confusing us. If one trains the net-
work on such structures with rich similarity, the network will become
more accurate on distinguishing these 2s, 3s and 7s lot better. It is
this similarity that was better captured by bypassing neurons across
layers—feeding information over another scale—that made the 7
and 9 deconvolving more accurate with the von Eckonomo model
experiment.

The physical meaning, that is our translation to another domain
of different dimensionality, in our associating the meaning, and the
physical constraints, are helpful in understanding what transpires
in neural networks and it also improves them since we are placing a
rigorous natural constraint on them through the science

Of course, even with science con-
straining, what has not been seen may
perhaps be there in the real world, and
by placing science constraints, in the
modeling of training data that provided
us with the statistics and then making
predictions, we have not given the net-
work a tool to predict something new
beyond the data. The science constraint
only optimized the network on the
data. Any prediction will have to be
consistent with the data and the science
within the network’s accuracy.

This viewing is quite consistent and since we have used the word
energy often in the context of networks, it is a useful construct to
provide an interpretation to probabilities.

Take p(x|θ). This of x(x) given that it belongs to some feature θ.
The Bayes view of the probability of the feature given the set x is

p(θ|x) = p(x|θ)p(θ)
∑θ′ p(x|θ′)p(θ′)

. (4.22)

This is a revisiting and change. Any prediction is a matter of flow—
it is a momentum—with the position being the initial condition,
which is the boundary for this problem. So Bayes in a way is mak-
ing a canonical statement, here stated in classical physics terms, of
position and momentum in observations. In classical mechanics, we
relate these through the Hamiltonian. Take the Hamiltonian for this
problem as

Hθ(x) = − ln p(x|θ), (4.23)

the mean as an expectation of

µθ = − ln p(θ), (4.24)

and we have

p(θ|x) = exp{−[Hθ(x) + µθ ]}
∑θ exp{−[Hθ(x) + µθ ]}

. (4.25)
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Since θ—a parameterization of the model—is one of a discrete set—
an index—vectorially one can write

p(x) =
exp{−[H (x) + µ]}

∑ exp{−[H (x) + µ]} (4.26)

We have arrived at an equivalence between Bayes view and the parti-
tion functions with ∑ exp{−[H (x) + µ]} being the zustandsumme.
The Hamiltonian is the surprisal, unlikely events of low probabili-
ties have higher Hamiltonian, an energy, which in the probabilistic
language is the surprisal.

This view can now be extended to see what neural networks are
doing. Take an n-layer feed forward neural network. Using the affine
and nonlinear transformations of the network, with σi as the local
operator (tanh, softmax, max-pool, ReLU, et cetera, and Ai = Wix +

bi as the affine transformation in the ith layer of the network, one
can now use Equation 4.26 together with the nonlinearity—take, for
example, softmax of σ(x) = exp(x)/∑i exp(θi)—and we now have
the probability

p(x) = σ[−H − µ] (4.27)

The parameters/features of the set of `̀ means´́ µ is now just a bias
vector for classification probability in the final layer extracting fea-
tures when using softmax. This is what we see with our very early
digital logic example. The Hamiltonian has a meaning in energy
function terms and is computable. The central limit theorem implies
that we will end up with a multivariate Gaussian in the form

p(x) = exp(h + ∑
i

hjxi −∑
ij

hijxixj) (4.28)

for the network, which shows that the Hamiltonian H = − ln p is
a quadratic polynomial (hs are abstractions that are the coefficients-
or-eigenvector-like response to the operator operating on the state
description in x.).

Figure 4.20: A single layer of a re-
stricted Boltzmann machine with
individual inputs representing a state
v interacting through the affine and
nonlinear transform leading to a state h.

In Figure 4.20 is this formulation rewritten in energy form. This
is a restricted-Boltzmann machine (RBM), that is, a condition which
in physical view says that there is no interaction with oneself—no
singularity in this—and that interactions between all the interacting
terms of representation represented in the nodes v lead to a quasi-
representation—nodes hs for hidden—with individual bias, pairwise
and higher-order effects. To get this right by efficiently agglomerating
self and mutual information, the deep neural networks requires that
layers with many hidden nodes exist in intermediate stages so that
the information flow across the network leads to the final dimension-
ality reduction that leads to efficient classification. The central-limit
theorem is making a stronger statement for what is happening in this
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network with the input state being classified through intermediate
representations.

Figure 4.21: The recursive network—
transformers and large language mod-
els being an expanded generalization—
viewed as restricted wave.

This same behavior is representable for the recursive networks as
shown in Figure 4.21. Each one of the intermediate neural networks
is an efficient informational representation for a subset written in
terms of the probabilities. It is a higher-dimensionality Markov chain.

For the restricted Boltzmann machine, this is the mathematical
reduction to

p(v) =
exp[−E(v)]

∑v exp[−E(v)]
, where

E(v) = −∑
i

aivi −∑
j

ln[1 + exp[bj + ∑
i

viWij], (4.29)

and for the restricted wave—recursive network—this is

p(v) =
|ψ(v)|2

∑v |ψ(v)|
2 , with

ψ(v) = Tr
N

∏
i

Ai[vi]. (4.30)

These are classical-like physical equations of the network where the
coefficients or the matrix elements are approximate representation of
the interaction in the affine-nonlinear coupled terms. The restricted
Boltzmann machine representation in this form is also subject to
the information constraint, So, for all x ∈ x and y ∈ y, the mutual The recursive network is generative. It

is not subject to any constraint that have
not been placed. It is just projecting
approximately unilaterally on what the
model has been subjected to, properly
checked, or right, or factual, or not.

information flows through these hidden variables parameterizing the
nodes of the network as

IRBM(x : y) ≤ IRBM(x : h) ≤ |H| ln 2, (4.31)

where |H| is the Shannon measure. The statistics arise through
probabilities related by the Hamiltonian in surprises. The recursive
networks—like the Markov chain sequenced hierarchical construction—
-are just multiplication of ever-more complicated matrices that are
handled quite well approximately by the neural networks since they
are provide the approximation of nature’s approximations through its
cause-and-randomness.

What holds true in all these instant calculations—their approxi-
mations and their evolution in recursion—is that the relationship is
the constraint from information of Equation 4.31. This viewing also
shows that linear transformations also leave invariances intact. The
weights together with the nonlinear transformations are an approximation of
causal connections, and of estimations based on sufficient strength existing
in the inputs to cause a change, a process that is very much dependent on
beliefs, errors of judgments, observations and errors. The probability graphs
do this same procedure in their own analytic way.
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We as nature’s agents and machines as computing agents are
estimating and infering in not too different a way, but each of us is
limited by what we have built as a view of our limited world. This
limited world of us (machine too) is subject to us and our biases, our
accumulated past, and our neural infrastructure. For the machine, it
is whatever was fed into it and its infrastructure.

The natural language programs are an allegory of how we view the
world and how we act in the world. We build on our experiences and
past, connect across domain, hide all the mathematical symbolism in
something that happens in our minds, to make judgments and deci-
sions and in our actions. So do natural language learning programs.
There is content within the network of the laws of evolution—what to
do given and what happened in coded symbolic informational con-
tent. Nature, by the way, doesn’t give one unique answer. Try doing None of this inputing and outputting

has anything to do with the language
used to describe the problem assigned.
A thousand plus years ago Baudhayana
Sulvasutra was expressing Pythagoras
equation in verse. Symbolic algebraic
equations arrived from middle east to
efficiently express the relationships.
Leibniz in the middle of the millenium
gave us a way to describe small changes
and integrative effects. These are all
language forms. Symbol, assembly of
symbols as words and phrases, and
by a grammar or the rules of the game
that are externally imposed but also
appear through internal processes,
giving meaning to this collection. An
efficient representation each step of the
way. As humans, we start knowing the
numeral 1 and 2, get up to 4 by age
of two, but this process becomes an
arithmetic algorithm for us to add and
subtract object numbers to describe that
world around us. Same with characters,
words, words in sentences, and as
Kierkegaard, the Danish theologian,
posited meaning from the context of
the collection of words under the rules
of the grammar. This argument places
the number sense before Chomsky’s
language development arising from
the hard coding in the frontal cortex.
This is the reason I think large language
models are so enormously powerful. It
can interpret all the different disciplines
of sciences, their coming together,
and in turn be capable of a natural
description. It develops its own internal
grammar/algorithm driven meaning.

anything natural, starting flowers from seeds, raising children, going
from one place to another, et cetera, and one quickly finds out how
valuable the Fokker-Planck equation is in bringing in the importance
of stochasticity and yet a connection and an order arrives.

The physical underlying characteristic in these complicated view-
ings is that what-is-not-known, that is, entropy is

H(x|y) = −∑
x,y

p(x, y) log p(x|y), (4.32)

which tells one what the uncertainty is as resulting form true uncer-
tainty, that is, what is not really known and is subject to whimsies of
nature, and what is also there due the uncertainty of the finiteness
of the data. The Kullback-Leibler divergence is the measure—the
relative entropy—between distributions, that is, in our inferencing
between what is known and what is our model of what it says in the
form

DKL(p(x, y) ‖ q(x, Y)) = ∑
x,y

p(x, y)
p(x|y)
q(x|y) . (4.33)

There are errors in measurements, and there are variations too that
arise in the limits and limitations of the data. Finiteness of data is like
a broad-spectrum effect, so like that of thermal fluctuations. In the
physical picture then, the inverse temperature of a random variable
β0(x) ∝ 1/T. This can be defined in terms of the Kullback-Leibler
divergence between the estimator at data size n to the probability
estimator with the data removed. Uncertainty of true probability and
uncertainty of the finiteness of the data get captured by the Kullback-
Leibler distance. The fluctuations, and the finiteness of data will look
very much like a thermal fluctuation.

We have argued the mapping between entropy—the lack of-
information—and energy, the energy being a measure of what the
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information content known gives us as a capability to do something
useful with. The neural network is the information machine, with
information present in some form coded in it—like a computational
program or a physical evolutionary law except it is approximate and
obtained from the training—so the same ideas as those of the ther-
momechanical machine relate. The difference is just in these meaning
assignments. Bond strength, energy in waves of fields, or of parti- This point is subtle. Information, we

will look at more carefully in the next
essay again from a different perspective,
but it is also bond strength, energy
spread out in the vibrations, and all
those very many other confusing ways
that energy appears in the language
of science since it is, like entropy, a
characteristic that in totality is en-
compassingly useful—energy is what
energy does—but then, for convenience,
we go ahead and obfuscate it.

cles’ motion, or of atom’s vibration, or within them, even within the
nuclei, are all ultimately still a form of information.

We can draw parallels based on this correspondence between our
information-centric neural network description and statistical- and
thermodynamic-centric description of the physical world. A few key
thoughts are

• The internal energy U0(x) is the Kullback-Leibler divergence be-
tween the target and empirical distribution, that is U0(x) =

DKL(p(x) ‖ q(x)). If the the stable minimum energy state has been
achieved and the target and empirical estimates are identical. The
Kullback-Leibler divergence zeroed out. If it is not, in the complex
problem with its errors and fluctuations and incompleteness, the
distance is an estimate of the differences, and the internal energy is
a measure of how the two are different under a weighting related
to the distribution of the likelihoods. Minimizing the divergence is
finding the maximum likelihood, the estimation of most weighted
and most likely.

• The cross entropy is how the lack of knowledge exists between
one distribution sampled using the other. This is like viewing
another world based on our view of the world. Cross entropy
U(x) = H(p(x), q(x)) is the information disconnection between
these two worlds described by the two distributions. The self
information is a very Shannon-like measure based on relative
frequency of surprisals. S = log p̃ is this self information.

• The Helmholtz free energy F (x) tells us the capability of a system
for productive conversion of energy to `̀ work´́ under certain
macroscopic parameters (pressure) kept constant. The same is
true for the neural network with F (x) = [U0(x) − H(x)]/β0(x)
as the useful information energy. How far is the internal energy
from the Shanon entropy determines the available information
processing capability of the system.

The statistical mechanics techniques of using the partition func-
tion can now be applied in the same way. With Z as the partition
function,

H = βU + log Z,
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β = ∂HU ,

∴ F = U − 1
β

H = − 1
β

log Z, and

−∂βU = 〈S2〉 − 〈S〉2 = I(β), (4.34)

where S is the surprisal. Note how the same form of relationships
hold.

The last equation is particularly information centric in describing
the relationship between the energy fluctuations and the Fisher in-
formation that looks at broader relationships between the symbolic
representations of the data. The Bayes relationship as well as the par-
tition function relationship discussed earlier are a manifestation of
this correspondence in the foundations of these engines.

4.10 Science- and information-guided neural networks

Given that one has an incomplete knowledge of the system
being explored by neural network, there are errors of measurement
or even fakery and limited sampling and number of training samples,
just like in a physical system, where surfaces and bulk with their
different interactions and symmetries lead to properties that change
substantially.

Take gold, for example, bulk gold with
surface asymptotically unimportant
has a number of symmetries and
interactions across scales that end
up describing a melting point. Take
the gold at 10 nm size, so with the
order of 106 atoms, of which 104 are
on the surface and with the surface
region under different interactions
constraints, the melting point can
be reduced by as much as 300 K.
Size mattered. It changed behavior.
How one should calculate under this
nanoscale circumstance is different.

The Kullback-Leibler divergence is still relevant as a measure of
true to estimate differences. What should be the way to get accuracy.
Should it be maximum likelihood, maximum entropy, minimum free
energy or something else?

Physical principles tell us that the maximum entropy is some
`̀ quasistatic´́ equilibrium state under conditions of being in a reservoir-
like environment. This is when all the rapid processes have ex-
hausted themselves. We also learn that minimum energy is a `̀ ground-
state´́ -like condition describing a condition for a system to settle
in by exchanging away excess energy. Neither of these are repre-
sentative of a system performing something useful, that is, using
information—an energy-like form as we have argued—to cause a
change. This is stimulation and response. Stimulation requires ability
to impart energy and the system needs to be out of equilibrium and
have excess energy to make change come about. This is the problem
of analyzing and predicting the out-of-equilibrium phenomena that
are central to all the problems of interest, whether in neural networks
or in real life or in physical sciences. Maximum likelihood, maximum
entropy, minimum free energy or something else are all plausibilities
for attacking the problem. Minimum free energy may get the melt-
ing temperature right for gold even though there will still be some
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suspicion regarding the effect of heating and cooling rate on how the
energy interactions are taking place within a nanometer-sized object.
We just can not place full confidence in the end result because of the
incompleteness and open boundary conditions. Placing more and
more objective scientific constraints helps in narrowing the window
of plausible solutions.

Figure 4.22: Comparison of three
different methods of estimation as a
function of sample size with 3 different
internal states of probabilities p(0) =
0.850, p(1) = 0.116 and p(2) = 0.034.

Figure 4.22 shows results of simulations with the three different
extremizations posited. The data has three different internal states of
specified probabilities and one can see that for large-enough sample
sizes maximum likelihood and minimum free energy lead to smallest
divergence. The maximum likelihood is the usual measure in classi-
fication determination, but for small samples one sees that minimum
free energy would be a better choice. Take your pick. It entirely de-
pends on your world’s size. Given a large enough size of the world,
maximum entropy is the worst choice. This stands to reason. A use-
ful system needs to be away from thermal equilibrium.

We now take a few examples from different science domains
where one can place the science constraints to show the efficacy.

A standard example in condensed matter physics is the use of
Ising models as prototypical system to see interactions, of energetics,
and of phase transitions as conditions such as that of temperature
are changed. For the Boltzmann machine, if σ is the spin array, at
thermal equilibrium, the probability in the physical models, and the
weights and biases spread out over the hidden nodes and connec-
tions in the neural networks, are accounting for interaction contri-
butions.. In the language of neural networks co-mapped with the
physical-mathematical description, this is

p(σ, T) =
1
Z

exp[−H (σ)/T]. (4.35)

For the neural network, take the model in the form

λ = {W, b, c},

pλ(σ, h) =
1

Zλ
exp[−Eλ(σ, h)], and

Eλ(σ, h) = ∑
ij

Wijhiσj −∑
j

bjσj −∑
i

cihi. (4.36)

The marginalization of the joint distribution, a Bayesian summation,
then gives

pλ(σ) = ∑
h
pλ(σ, h) =

1
Zλ

exp[−E′λ(σ)]. (4.37)

This is the posterior as just the summation of products over likely
pathways. Bayes, stationary action, and Feynman! A restricted Boltz-
mann hidden layer is modeling the Bayesian process and we have
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incorporated that energetics of the interactions in formulating Equa-
tion 4.36.

With the mathematical representation that has a physical meaning,
and the physical constraint, this is an example of science-constrained
neural network. The result shows the approximate calculation by the
neural network that is similar to that from statistical mechanics. Fig-
ure 4.23 shows as a function of temperature how a model calculation
behaves for an averaged expectation—an ordered parameter—and the
phase transition as one proceeds across a normalized temperature.
There is a specific weight—the energy interaction condition—which
determines the phase transition.

Figure 4.23: A restricted Boltzmann ma-
chine based Ising calculation showing
phase transition. An order parameter
changes as a function of temperature
as shown in (a). In (b) is the frequency
statistic for four different temperatures
as a function of the interaction param-
eter that is tied to the energetics of the
interaction.

Lagrangians and Hamiltonian—the energy-scalar-based formulations—
are a standard mathematical physics tool for solving physical prob-
lems. Nearly all of what we see in action-based behavior is describ-
able through it. Hamiltonians follow canonically from the funda-
mental stationary action principle based Lagrangians. Because they
are based on scalars in energy form, they provide a very convenient
tool from which forces can be derived. Lagrangians are statement of sta-
tionary action, a very profound physical statement. Using stationary action
therfore can implicitly introduce Langrangians in neural dynamics. And if
handled canonically, Hamiltonians too can be deployed.

This says that physical principles can be implicitly built in, or
can be explicitly built in as constraint conditions in the algorithm of
generating—classification or of evolutionary dynamics—in neural
networks of all the different types that we have discussed.

This is the science-based extremization, add to it the mathematical
loss minimization and regularization of the neural network, which
we have established is an information engine subject to the physical
laws and explainable through the information edifice. So Lagrangians
and Hamiltonians, transformations in and through them for effec-
tive manipulation such as Hilbert or simplectic, coupled with cross
entropy, or mean square, or others, with regularization is a neural-



114 engineering & science & in our world: this i believe.

networked based physical approximate description of the real world.
The approach works for all neural networks, autoencoders, trans-
formers or recursive neural networks, in generative networks, and
others in all the different domains to project the dynamics and for
extracting physical parameters.

Neural networks with science constrains built-in across the net-
work or as an optimization constraint is an approximate tool for
complex dynamics. It should tell us the parameters of the dynamics,
for examples, a Fokker Planck equation should fall out of it, and it
should also generate the dynamics into the future.

I will illustrate this through examples, one is where Langrangians
are a constraint implicit in the neural network. The others are to
show the dynamics because the neural network is capable of describ-
ing the Fokker-Planck-like dynamics.

First, we look at dynamics in a trivial model of the damped har-
monic oscillator whose equation therefore is known because of the
simple problem statement.

md2
t2 z + µdtz− ksz = 0,

z(t = 0) = 0,

dtz|t=0 = 0, and[
δ =

γ

2m

]
< ω0 =

(
ks

m

)1/2
, (4.38)

where the equations as written are for under-damped oscillation
because of the last part’s constraint. m is a mass, γ is a damping
parameter, ks is a spring constant to represent a conservative force,
and ω0 is the natural oscillation frequency to be expected in the
ground/equilibrium unstimulated state. We know the physical solu-
tion of this precisely solvable problem as

z(t) = 2A exp(−δt) cos(φ + ωt), where

ω = (ω2
0 − δ2)

1/2
. (4.39)

All one has to do for this problem is to first train the neural network
to interpolate part of the solution from training points. That is, one
may generate some points (including adding stochastic noise to it).
Follow it by then forcing the neural network to extrapolate by pe-
nalizing the underlying differential equation in its loss function. The
loss function is just ‖ ẑ− z ‖2. We end up with a neural network
whose weight and bias parameters model the regularized dynamics
that the data models, and explicitly, this neural network then shows
the dynamics. The damped oscillator could be learned with a few
points. Once trained with a few points one implicitly knows the
equation form coded in the weights and the biases of the network.
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Under any perturbation, the estimation minus the actual can be min-
imized and predictions generated. The calculation is easy enough to
do that. The gray line here is the actual solution to the problem and
then this other one was a neural network solving that problem. This
is shown in Figure 4.24. A generative network now exists that can
model this simple problem in time and space.

Figure 4.24: Damped harmonic oscil-
lator dynamic extracted from training
data followed by a generative output of
the dynamic.

We saw some of this oscillation—a lot more complex dynamics—
during the recent Covid tragedy. We had some data—errors, warts
and all—and it was possible to then predict what the behavior will
be based on past data. The challenge was that parameters are chang-
ing in time. But the method is an approximation where they can be
pulled in, something that is difficult or sometimes impossible to do
when one is looking for a clean precise analytic solution In the case

It is this capability to incorporate every-
increasing complexity as more is known
into the neural network’s predictive
behavior—approximate as the reality
and the network are—that make neural
networks so interesting.

of Covid, with these time-dependent parameters, the response is

z(t) = 2A exp(−δt) cos(φ + ωt) + c. (4.40)

The spring constant ks, the damping γ, and the bias term c, all time-
varying can be left for the neural network to implicitly model and
one can predict. Figure 4.25 shows a modeling of the prediction (the
dots are from the training data) of how in time the past predicts the
future with a what looks like damped oscillatory complex response.
What is also important to recognize is that this approach is not re-
stricted to a simple oscillatory picture. It can be far more complex. It
can be in multiple dimensions such as space and time, and therefore,
given sufficient data, also will describe the Fokker-Planck like behav-
ior of IITf‘a Kanpur graduates staying or moving away from India
and coming back and eventually, as we all will, pass on.

Figure 4.25: A predicted behavior of
the complex Covid dynamic from a
limited data into the future with the
time-sequence being implicitly modeled
by the neural network under Gaussian
mean-squared constraint.

The next two examples are a little more elaborate. They show how
science such as of action in mechanics or nonlinearities of incom-
pressibility in fluid dynamics can be implicitly incorporated.

The Lagrangian approach—an action-based approach—applies to
situations where conservation of energy holds and so all those forms
have to be folded in. The state represented by (q, q̇), a generalized
position and velocity, does not need canonic variables, which, Hamil-
tonian does, and the Euler-Lagrange equation describes the evolution
through

dt∇q̇L = ∇qL , (4.41)

whose inversion leads to

(∇q̇∇T
q̇L )q̈ + (∇q∇T

q̇L )q̇ = ∇qL , (4.42)

which can be placed in the form

q̈ = (∇q̇∇T
q̇L )

−1 [∇qL − (∇q∇T
q̇L )q̇

]
. (4.43)
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If the time-dependence q̇ is known, then one has also determined
(q, q̇).

The encapsulates and integrates within it a number of ideas and
thoughts relevant to neural networks.

• A physical principle writable in quantitative terms can be recast
for minimization implicitly and objectively,

• the minimization constraint can then be mapped on to a neural
network’s loss function,

• additional principles, for example, symmetries, and so on, can
generalize the loss function for robustness,

• and if all this works, one could employ such an implicit extraction
for additional predictions in complex dynamic or static problems.

To implement this, one needs sufficient training data, and an addi-
tional set to test. For demonstration purposes, this data may be cre-
ated deterministically and noise added through analytic approaches
since we know in this case the underlying equations. The Lagrangian
incorporates the principle of action, where the action is a functional

The point of functional as an informa-
tion collective instrument is important
in my view. Often we don’t know the
functional, even Lagrangian for com-
plex problems, and it takes symmetries
and trials and errors to figure it out.
But once one knows it, the heaven and
earth open up to solution. Many body
problems have functionals—Kohn-Sham
being one of the teachable examples—
scattered all over and that we deploy.
Such functionals can become implicit in
the network making life much easier for
complex problems.

Figure 4.26 shows a simple view of the neural network implemen-
tation of the first two items of the list above, and one can create a
framework for solution as following.

1. Generate the training and test data. These may be obtained by
analytical approaches (for simple problems) using randomized
starting conditions. Equation 4.41 describes the Lagrangian dy-
namics. The two variables are q and q̇, which subsume single or
many-body generalized position and velocity coordinates. The
set of coordinates are Q = {q, q̇}. In order to make the problem
realistic, one may add noise to this deterministic solution.

2. Deploy the solution to the dynamics equation, Equation 4.43, to
determine parameters important for loss functions. We use the
time-dependences in first and second order for both networks in
Figure 4.26. The various partial derivatives ∂q, ∂2

qq̇ and ∂2
q̇2 are part

of the forward and backward propagation, and can therefore be
implemented in a neural network.

Figure 4.26: Trajectory sets are the
input from which a target meta-
Lagrangian is estimated. The gra-
dients and Hessians are also an
output of this part of the network.
The loss function is `(L̂ , Q; t) =∥∥L̂ −L

∥∥
2 is minimized, and q̈ =

(∇q̇∇T
q̇L̂ )

−1
[
∇qL̂ − (∇q∇T

q̇L̂ )q̇
]

outputed from the network so that
integration can be performed to de-
termine the trajectory. This combined
construction is the network.

The Lagrangian-based algorithm is then

1. Generate training and test data using an analytic solution of the
Lagrangian formulation. Incorporate noise.

2. Use the test data, employ the loss function on the target versus
predicted (q̇, q̈) to optimize the network, as also three different
derivatives: ∂q, ∂2

qq̇ and ∂2
q2 .
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3. The loss function is minimized to obtain maximum accuracy.

4. For a general problem, employ the network to now obtain q̈.

5. From q̈, obtain the dynamic trajectory.

A double-pendulum example shows this approach in use. A snap-

Duplicating the work of Cranmer and
co-authors of the dynamics of dou-
ble pendulum was my first serious
foray in building neural networks.
See M. Cranmer, S. Grayedanus, S.
Hoyer, P. Battglia, D. Spergel and S. Ho,
arXiv:2003.04630v1, 10 March (2020).
A paper with authors from Princeton,
Oregon State, Google Research, Deep-
Mind and Flatiron Institute has got to
be interesting. And it was. More than
interesting.

shot on the right shows predicted results of such a learning

A movie of the pendulum’s motion,
shown in the talk, can be accessed from
the reference in the margin notes of the
Acknowledgments.

Figure 4.27: A snapshot in the trajec-
tory picture of a simulated double
pendulum oscillation.

An example of textbook nonlinear equation is the Navier-Stokes
equation. Much complexity is buried in it, even in its simplest of

This second problem was the next one
in writing codes since I was looking
for a way to tackle a way to extract
the Fokker-Planck equation from data.
The paper by Raissi and co-workers,
applied mathematicians, M. Raissi,
P. Perikaris and G. E. Karniadakis,
Journal of Computational Physics,
378, 686–707(2019), together with the
first opened up during the writing—
doodling—process the remarkable
consequences of this approach. Navier-
Stokes equation has always been
fascinating ever since Prof. Ramki
at IIT Kanpur put it ad hoc on the
board and bringing in all these strange
numbers Reynolds,. That is still the
situation. It cannot be derived from
first principles. Hydrodynamics, with
its turbulence, laminar, chaos, and
all the other changes that take place
depending on conditions, is still an
incompletely understood problem
despite hundreds of years of work.
Science matters. Soviets figured out
how to make torpedoes and submarines
go fast through the understanding of
supercavitation. Mathematics matters.
Physical intuition matters.

formulations. Take the equation in its two-dimensional form. Let
u(t, x, y) be the x component of velocity field, v(t, x, y) the y compo-
nent, and p(t, x, y) be the pressure. Write

f = ∂tu + α(udxu + vdyu) + dx p− β(dxxu + dyyu), and

g = ∂tv + α(udxv + vdyv + dy p− β(dxxu + dyyu). (4.44)

We introduce the incompressibility constraint in the form

dxu + dyv = 0.

These are all minimization constraints and written as differentials
and Hessians. So, f and g are are science constraints (parameterized
in the α and β) to be vanishing, and we have added incompressibility
as a regularization constraint

Regularization is a very powerful tool
in introducing the physical constraints
that we understand intuitively in a
neural network problem. Symmetry,
for example, can be introduced through
Poisson brackets.

Now the neural network can jointly approximate a blackbox func-
tion (like the Lagrangian) ψ, where u = dyψ and v = −dxψ as
conjugate functions, and pressure simultaneously. This is now a joint
mean-square loss.

For a problem of free stream flow, with normalized units, a cylin-
der diameter of 1, a viscosity = 0.01, so a Reynold number of 100,
Figure 4.28 is for the dynamics of from a neural network and the
vortex shedding that results. The neural ntetwork implementation of
this dynamics was trivial compared to that of the Lagrangian in two-
pendulum problem. That two-pendulum problem could also have
been recast in Hamiltonian form, but then it expects canonic vari-
ables as inputs and outputs. This limits its generalizability though
Hamiltonians are far more intuitive to understand physically.

For many examples, the Hamiltonian formulation can be trans-
formed into a more interesting, compelling and useful form, some-
thing hard to to with Lagrangians. The following is one example.

Working with canonic variables, the coordinate set now is Q =

(q, p; t). Let S be the time derivatives, then at time t = ti + τ,

(qt, pt) = (qi, pi) +
∫ t

ti

S(q, p; t)dτ, (4.45)
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under the Hamiltonian scalar relationships of

dtq = ∂pH ,

dtp = −∂qH , and

S = SH =
(
∂pH ,−∂qH

)
. (4.46)

is the symplectic gradient that keeps the action stationary. The
Hamiltonian maintains the energy constant, and the SH as a vec-
tor field then predicts the time evolution through Equation 4.45.

Figure 4.28: Dynamics of trajectory
around a unit diameter cylinder at
Reynolds number of 100, and the vortex
that results in uniform flow far away
for a two-dimensional Navier-Stokes
simulation.

This description gives us a dynamic by employing a constraint that
is based on gradients. Neural networks employ gradients, so also
this gradient, in their propagation algorithm with little increase in
the computation. This is also information that is available. A simple
algorithm implementing this constraint via the learning a parametric
function for H instead of the SH is the following. A conserved
quantity H as a surrogate for energy can be learned, and a loss
function written as

`(H , Q, t) =
∥∥∂pĤ − ∂tq

∥∥
2 +

∥∥∂qĤ − ∂tp
∥∥

2 (4.47)

can be employed. Regularization of this can employ additional con-
straints. And one can add additional favorites.

Such an approach then gives a dynamics. The approach also gives
a static picture as an instant snapshot. So, perhaps there is potential
here for applying this approach to a variety of many-body problems
encountered in semiconductors, and everything else non-living, and
sometime in the future, living.

What is powerful here is that the network finds a defining under-
lying implicit principle (Lagrangian, Hamiltonian, ...) from which one
extracts through the network the results for a new task. Statistical
problems can often be cast in terms of partition functions. So, that is
another place where this approach may become useful.

The symplectic transformation mentioned, like the unitary trans-
forms, and others, is information-preserving rewriting of the state
evolution in new form, where these can be quite easily solved and
analyzed. They preserve the phase space and therefore are very use-
ful in the neural network implementation since the neural network
is another way by which the affine-nonlinear transform is changing
how information is represented in a useful, even if approximate, way. Transformations are ubiquitous and

very useful. Learning Fourier transform
is a right of passage for electrical en-
gineers. Reciprocal space contains the
same information and sometimes it is
better tackled there. Not just in electro-
magnetics or optics but also in analysis
of crystalline solids or anything else
with periodicity. Conjugate transforms
take out singularities of sharp corners
and are very useful in flow analy-
sis. Look at symplectic Hamiltonian
dynamics in this rich vein.

The Hamiltonian dynamics lets us calculate a generalized momentum
and position through

∂t p = −∂qH and ∂tq = +∂pH . (4.48)

This set of equation can be rewritten in a flow form, called the sym-
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plectic flow form, of

∂tx = ∇xH (x)J where J =

[
0 1
−1 0

]
, (4.49)

under the symplectic condition

(∇xz)J(∇xz)T = J, with

∂tz = ∇zK (z)J and K (z) = H x(z). (4.50)

The phase space x = (p, q) can be transformed into the new space
z = (P, Q), which is a latent—similar to what the neural networks
are doing in hidden nodes as a latent phase-space—that preserves
dynamics. p(x) = exp[−βH (x)] is preserved during this transfor-
mation. This makes the dynamics much simpler to solve and even more
amenable to neural network approaches. So, the Hamiltonian way has a
way to wriggle out from under the constraints of the Lagrangian way
through another transformation.

Figure 4.29: A simple problem of
single atom one-dimensional crystal
structure’s oscillations in (a) that can
be coded through symplectic neural
transformation as in (b).

Figure 4.29 gives the example of the phonons and vibration prob-
lem of a one-dimensional single atom structure. The symplectic neu-
ral transformation shown in (b) is invertible and is straightforward
to implement neurally. Figure 4.30 shows the solution to the problem
obtained with this approach. The approach has now become pow-
erful generalizable approach for far-more complex problems. Even
problems such as of a defect that may have a Poisson rare probability,
but not does not fit the model built.

All these examples, science problems with science constraints and
extremization placed in suitable form, together with the approximate
neural network information dynamics show the power of recasting
traditional problems in a way that become far more generalizable
where important principles—action, limits, information content, con-
servation, and others—can be kept implicit and providing sufficient
data for fulfilling the need of sufficient statistics provides lets us gen-
erate the dynamics. Textbook and non textbook real world problems
get within the reach even if one cannot completely describe all the
interactions leading to it. The data is the informational manifestation of
all the interactions. Noise, errors, limited data informationally are of

Weather prediction is a perfect example,
incomplete information, uncertainty of
information and uncertainty of nature,
non linearities and chaos, poor models,
et cetera. This is an ideal place for
letting a neural network handle it.

a similar nature and the neural network is a powerful tool to tackle
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Figure 4.30: (a) shows the analytic and
neural solution the phase dispersion
and (b) shows two modes—the low
frequency branch—of the structure.

the stochasticity. The cross entropy, that is, a mean-square optimiza-
tion, together with regularization helps tackle this stochasticity using
stochastic means. The science principles put the natural laws ascen-
dant to place order.

4.11 Revolution or evolution

The reason I find the application of these techniques so
powerful and so useful and such an important change from the tra-
ditional of the past few hundred years is that one need not simplify
any problem and constrain any problem into essentially a `̀ spherical
cow.´́ We can tackle real world systems. John von Neumann is fondly
recalled for saying, paraphrased, if you give me 4 parameters I can
make you an elephant and if you give me a 5th one, I can make it
wiggle its trunk.

I consider it very likely that we can wiggle the trunk of elephants—
a real world metaphor—with neural networks in pictures as also
through neural prosthesis, even if it is lots of weights, biases, non-
linear transformations, recursiveness, and a whole lot more. The
wiggling trunk and much much more under constraints of all the Maybe von Neumann understood the

implication of the fifth parameter in his
elephant statement. Neural networks
are giant number of these parameters—
still not understood in their collective
form—but they do make the elephant
trunk wiggle.

sciences’ knowledge and using many of those principles implicitly
is within our reach. This is what makes it a black box sometimes,
just as nature too appears as a black box sometimes, but we have a
chance at solving many difficult complex open-boundary challenges
of sciences and of society using these means. It is an entirely new
way of attacking problems.

Just as the Indians in first millennium bequeathed us a way of
tackling and understanding numbers by the idea of 0 written of by
the great Brahmagupta as a place holder with profound meaning,
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and the Hindu numeral system that, by providing the decimal basis,
made arithmetic tacklable asymptotically to infinity in both direc-
tions, and algebra became a natural outgrowth of symbolic manipu-
lation, followed by the next enormous jump with Leibniz’s calculus,
neural networks as a scientific tool are another major step for tack-
ling complexity and openness by giving away the determinism of the
former.

Real world problems without many of the past constraints now
become accessible. It is as another way of doing science and mathe-
matics. No doubt that purists will find this an unpalatable and too
strong a statement since it breaks a dogma or central belief just as
computer-based proof caused much angst at the end of last century
with the 4-color problem. It may take time for this view to take hold,
we are still at a starting point, but the ability to look and project into
unconfined problems of open boundaries and undiscovered princi-
ples and undiscovered scientific principles are within the reach. The
practicing of the neural network tool in itself tells us what does not fit. By
making us responsible for explaining what does not fit is in the long
deep-rooted tradition of science and philosophy.

What I had written the start what Dirac had to say about quantum
mechanics—principles are done, practice and figuring it out is in
front of us—is I believe also true about neural networks. It opens
the problems that Dirac perhaps had in his mind’s eye, it is also true
for all the problems that people ranging from Carnot to Claussius to
Maxwell to Boltzmann to Shanon had in mind, now to a new way
of tackling and resolving. No different than that Turing’s test of
intelligence is long in the past for machines, yet we keep struggling
with figuring things out. There will always be a whole lot of money-
making kind of things that most of the world will be interested in,
but that there is also a lot of figuring things out that many of us
might be interested in as a unique human aspiration.

I look forward to seeing this evolution take hold in this lifetime.
But caution too is warranted. AI/ML ending up in the long short

term memory models, and their power, is still a learning to scale of
connections and the underlying rules. This is inductive reasoning
and tensor operation engines are enormously successful at it. The
next big challenge to AI is how to recreate in the machine the unique
human ability to integrate ideas across domains, which makes one
bring the incredible insights.

Affine and non-linear transformations
agglomerating information across lay-
ers over many nodes using random
sampling is easily subject to being
called a stochastic parrot. But there
is something important—not unlike
early years of a human—in there of
building a model for dealing with a
narrow domain of the world. Bayesian
probabilities are inductive. Einstein’s
Gedankenexperiment of moving trains
and flashes of lightening for special
relativity and accelerating elevator for
general relativity are to be beholden.
This is deductive reasoning, not induc-
tive.





5
Cultures: Science, engineering, interdisciplinarity and
the fallacy of Ockham’s razor.

What exactly constitutes science and what is engineering, or what is technol-
ogy, is nebulous at best. Progress in science depends on development of new
tools. Experimental tools arise from progress in technology and engineering.
Theoretical tools too are creations where one connects physical and men-
tal worlds. The natural world is chaotic and subject to randomness. It is an
open, dynamic and nonlinear system. Randomness, causation, interactions,
thermodynamics, et cetera., all matter. So, simplistic views—Pasteur’s quad-
rants, Wallace-Darwin’s adaptation, Snow’s two cultures, Kuhn’s paradigm,
Ockham’s razor in making simplest of choices with least axioms, and many
others—are insufficient. The conduct of science and engineering has contin-
uously changed since the dawn of modern science, it changes the world and
the world changes it, changes are fast and slow and non linear, local context
matters as can be seen best through commerce and non local through the
wars by robotic and autonomous systems of war or of international systems In the non-local world systems, I

place the security council of United
Nations above all. It is a world war II
anachronism in the twenty-first century.
Worldly time-space to complement the
science of spacetime.

such as the international monetary fund or the world bank.

How institutions practice and succeed and evolve matters for the future

trajectory. Today, most problems need a simultaneous in-depth understand-

ing of multiple disciplines even within the sciences. I discuss from personal

and my experiences with the broader world the resulting conflicts: cultural

such as what Snow brought up, how science and engineering has evolved

from the heydays of Bell Labs or IBM Research, and in what shows up in the

conducting of science and engineering in the world it inhabits in the mod-

ern society, particularly in the USA and Europe where I have spent enough

time experiencing the daily living. The problem is of dimensionality reduc-

tion in complexity. In this complex world, the only rule one can draw is the

Mencken’s rule that for every complex problem, there is an answer that is clear,
simple and wrong. As academics, we tend to operate within silos of our dis-

ciplines with its narrow technical language. As a person who has always

been uncomfortable with this narrow self-centered minimum, this essay is

an attempt against confinement. I will speculate based on this argument the

interesting problems for our community that the intertwined science and

engineering can fruitfully and gracefully approach.

Science and engineering in the world
© Sandip Tiwari, (2023)
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This essay is dedicated to Prof. Sarma, who advised Vikas
Sonwalkar and me in our design and hardware building of a pho-
ton counting system for our B. Tech design project. This task taught
much in that last year. Rely on one’s own brains, stop looking for quick-
fix answers from others or by trusting others, and the recognition that real
hard work, struggles and persistence are essential to doing anything of any
significance. Foremost that the struggle and the completion is far more sat-
isfying than just imagining and talking about it. Today, we talk about
single photons, entangled photons, quantum cryptographic transmis-
sions. These are many-generations-scale changes since those times.
Yet, these new developments also bring riding on this wave plenty
of more fun questions related to reality, locality, objectivity or subjec-
tivity and other metaphysical segues. The opening of the mind’s eye
as in E-Y-E as well as I as in capital I through the experience gained
from the faculty, fellow students and a sheltered campus thoroughly
turned me into an autodidact. IIT, the years at IBM research sur-
rounded by brilliant minds who were always willing to share their
views and to debate, and the bumps along the way positioned me in
the world, formed my world line and made me come to terms with
the struggles of the outwardly observable I with the inner I.

It was only much later that I saw in this inner struggle a reinter-
pretation of the Freudian idea that the maximal staying power is of that
of the mind at war with itself.

Thank you Prof. Sarma.
The first three essays of this series were technical, with informa-

tion and entropy—as in what is not known—as their core. This one
is too, but in a very different way where I step out of comfort zone of
equations and figures with short explanatory stories and paradoxes
in them.

We all need to be uncomfortable when we become too comfortable.

5.1 Culture

My view of culture, and us within the milieu is that it is all

Culture is another one of those words
that is often co-opted and melded
into any personal bias as politics,
economics, religion, sciences, and others
all do. To me it is phenomenological.
Observe and see how people conduct
themselves individually and in the
collective towards their individual and
collective aspirations. It is values, it
is past defining behavior of today, it
is how all the arts, sciences, respect
for nature, understanding and finding
pathways through different opinions,
et cetera. plays out in the terroir. The
Zentralfriedhof of Vienna, along its
central main entrance road, has a
cluster of graves of Brahms, Beethoven,
Schubert, Johannn and Josef Strauss,
von Suppé, Wolf, Schoenberg, also
perhaps a moved grave of Mozart. On
the other side is Boltzmann. This is
culture alive. Not the wordsmithing
such as thought leadership, influencer,
woke, cancel, top down, or the passive
aggressiveness of silicon valley. There
is a very central cult that runs through
humanity—Navajo and other southwest
native Americans excepted as far as I
can tell—that puts itself at the center of
all that it beholds and wants to control.
In A pale blue dot, Carl Sagan writes,
`̀ Humans are inconsequential. A thin
film of life on an obscure and solitary
lump of rock and metal.´́ Nature holds
seniority by a long shot over us and
everything we do is just playing with
our own destiny. Nature will march to
its own drummer in the long run.

encompassing capturing our existence, our place in the world, our
aspirations, our living, and our need to understand the world and
perhaps to channel dynamics in a natural way. There is a part of this
that for us practicing scientists and engineers is referred to as the
culture of science and engineering. This then is a sub-territory of the
conducting of science and engineering, its driving forces, its place
in the society, what I believe in, and beyond this of us as humans
on this planet with some special features. It is a very personal view
built on experiences around the world, in industry and in academia,
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during a dynamic time when India itself has come of age.
During schooling, we learn about something called the scientific

method. It sounded straight forward. Ask a question. Propose a hy-
pothesis. Perform experiment. Analyze result and reformulate. This
pedagogical teaching in the classroom is fallacious. It has been taught
and turned into a dogma by those who have never done science or
engineering. It does not work in the living classroom of life. We con-
stantly force fit, obfuscate parameters, introduce new parameters, or perform
other tricks to make results fit with models so that they work beyond their
natural territory.

The world we live in, its pushes and pulls, its dynamism, its falla-
cies, its immutables, the way to think since there is no absolute truth,
the cultures of disciplines, the needs of the local environment, the
times, et cetera, these all affect the scientific method of a given time Reading the Old Testament and the

New Testament was eye opening as a
window into the world of those times
in the different books and different
orthodoxies and the changes over time.
The different versions of Ramayana tell
the same tale. Something similar can
be read into the books and stories of
sciences of the last five hundred years
and its culture. Descartes versus Locke
and Hume, Leibniz versus Newton on
calculus or Wallace versus Darwin on
adaptation with the Royal Society as the
institution, or Montagnier versus Gallo
and AIDS in our time are reflective of
the same current of culture.

and place, and transduct in the society.
Let me start with the still-contemporary Pasteur-like Covid exam-

ple of Pfizer’s vaccine. Pfizer, because the company put the system
integration together. It is a stretch to call this engineering. It is more
of a putting together of the necessary resources, the money structure
and flow. The lipid nanoshell is from the Canadian company Acuitas
Therapeutics, whose founders are Thomas Madden, Peter Cullis and
Michael Hope, two Canadians and an English immigrant. The m-
RNA is from Bio-N-Tech whose two principal founders Uğur Şahin
and Özlem Türeci are two Turkish immigrants. Two different tech-
nologies came together, and the economic, global, media and finally
the social structure called it a Pfizer’s Covid vaccine. In a peak quar-
ter, half of the revenue at > $100 B came from the vaccine and from
Paxlovid, the antiviral drug for Covid, and so did a large percentage
of its profits.

This was called innovation even if the inventions were elsewhere,
and the underlying science and technology was built on the hard
work and contributions by other societies and scientists..

Patents are company property.
There exists no credit to knowledge, learning and developments

of past, or to the countries that educated the inventors, that is, the
path and effort to the final product. This is the sum of histories that
we scientists consider one of the foundational physical principles
represented through action.

The poor humanity can stand in the queue and pay. This is all
acceptable at least in the Western press.

This episode is what fits `̀ crime against humanity´́ label that one
often also sees being used in the Western press. A dictated world
order with the power of business-obfuscating language succeeds in
overpowering science unlike the great Pasteur’s work developing
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multitudes of vaccines and the foundations of immunology that the
great tradition of science of health goes back to.

Simone Weil remarks in the first part of last century in her essay
Human personality about the obfuscating potential of language. Weil
portrays the plight of an afflicted vagrant standing in a court of law.
`̀ Even if, through his stammering, he should utter a cry to pierce the
soul, neither the magistrate nor the public will hear it.´́

Simone Weil was the younger sister of
the great mathematician André Weil,
who spent couple of years at Aligarh
Muslim University, was an Upanishad
scholar, besides taking other detours
in life dictated by his conscience. Same
with Simone, who starved herself
to death, young and affected by the
human suffering of WWII. André’s
The apprenticeship of a mathematican
and Simone’s writings are a veritable
feast for the soul by showing how
dedicated minds work. Their parents
were intellectual luminaries too. I know
of no other family of such mighty
magnificence.

I should stress that this society-science-engineering problem is not
narrowly confined to companies or countries. It arises in science as a
social force in the hand of unchecked organizations, and individuals,
specially those enamored of wealth despite having grown in the
middle of impoverishment with many exploiting their ability to see
the gaping holes in the social framework.

India produces its own rich who do well exploiting human foibles.
It is not just Mackenzie’s Rajat Gupta for finance, or Pepsico’s Indira
Nooyi—she is not alone—for processed foods and sugary drinks un-
doing the benefits brought by modern science to health not to men-
tion the mountains of trash strewn all around of non-biodegradable
packaging, or in the latest financial scams such as cryptocurrencies

What is worse—plastics or nuclear—as
science and technology’s bequeathing to
to our world? This is a tough question.
I kneel towards my wife’s view that it
is plastics. It is a damage not just to us,
but the entirety of natural kingdom.
Nuclear has had consequences for only
specific countries: the hegemons and
those against which the nuclear finger
has been waived. I particularly feel
sorry for Cuba, a country that supplies
doctors for emergencies all around
the world, and yet is jailed due to the
Kennedy missile crisis, which started
with nuclear weapons being installed in
Turkiye.

with Nishad Singh, still 27 years old, of FTX Cryptofinance.
Addiction plays out everywhere. Lack of moral compass gives

enormous opportunities to individuals and groups, private and pub-
lic, politics included, to exploit.

Science and engineering and what they mean and their path, busi-
ness, economics, society, and other centers are constantly in conflicts,
even if the conflicts change with age as this multi-dimensional push-
pull takes place.

The Pfizer vignette serves as my starting point of the argument
and discussion.

5.2 Absolution versus retribution

Scientists need humanists. Humanists need scientists.
Philosophers, artists, writers, people who think about the nature’s
fate—with us humans as a dominating part of this collective—are hu-
manists to me having broken the bonds to the axiomatic or dogma-
defined frame in which we practice. We scientists and engineers have
plenty of success to our credit as also mistakes. The same is true for

The nuclear bomb is the scientists’
demonic gift to mankind.

the humanist. Both can be on a grand scale. This is worth dwelling

Rudyard Kipling has a poem celebrat-
ing the Cs of colonialism, civilization,
Christianity and commerce. Some of
the beginning lines:

Take up the White Man’s burden—
Send forth the best ye breed—
Go send your sons to exile
To serve your captives’ need
To wait in heavy harness
On fluttered folk and wild—
Your new-caught, sullen peoples,
Half devil and half child
Take up the White Man’s burden.
A club poet who is still part of young

minds’ curriculum in India. It is just
like our admiration of Manhattan
project, which was a sandbox for
scientists who should have known
better. In different forms, a euphemist
process of doing good unto others is
a tradition since ancient times under
humanist garb. Hitler was an artist who
credits white settlers’ treatment of the
native Americans as an inspiration for
Nazism.

on since it instructs us.
In the essay The two cultures, C. P. Snow lamented the disconnec-

tion between the science-centered and the arts-centered communities
by asking at gatherings of `̀ cultured colleagues,´́ who express their
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incredulity at the illiteracy of scientists by probing if they could de-
scribe the 2nd law of thermodynamics. To Snow, this is the equiv-

Figure 5.1: C. P. Snow, The two cultures,
ISBN 0 521 06520, Originally published
by Cambridge University Press (1959).

alent of reading Shakespeare. His point being that if one doesn’t

Snow backtracks on the 2nd law–
Shakespeare missive in the second edi-
tion of the writing. The whole kerfuffle
is amusing since it fits so well with
Marshall McLuhan’s pithy commentary
that the `̀ medium is the message.´́
Personally, I find Shakespeare really
painful reading, totally disconnected
from my world, and think that my
interests in humanities were delayed by
an early education where Shakespeare
was thrust down the throat. To me
the mind is not a vessel to be filled,
but a fire to be kindled, as Plutarch,
the Greek philosopher, said nearly two
millennia ago.

understand entropy’s continuing increase, and the need for energy—
a general energy—to make things work well, or the arrow of time,
how can one understand living.

The 2nd law has much to say about our living and organization,
so of immense interest to philosophers, but at the same time, I can
also say that we know far more today then we did in the late 1950s
when Cooke uttered this question. First, that even at that time it was
not a law, nor is it today a law. It is either an observation or is a con-
sequence of states that are not adiabatically accessible. Maxwell’s
demon paradox and the Brownian ratchet are examples that eluci- The Maxwell demon paradox dates

back to 1867. The Brownian ratchet
as a perpetual engine to 1900 from
Lippmann resolved by Smoluchowski
in 1912. That information is physical,
and that the demon is an information-
carrying agent, and all these are things
tied to probabilities are all develop-
ments of my learning life. Scientists
will even say that we don’t even know
that the universe is closed and we cer-
tainly don’t know what it even means
to say that there is a probability at an
initial moment given what it was at a
prior moment—a moment that does not
exist axiomatically.

date.
These are probing questions that any reasonable philosopher

would ask. After all Socrates emphasizes that the more a person
knows, the greater his or her ability to reason.

And so would scientists too. As a friend Seth Putterman, who was
George Uhlenbeck’s student, notes `̀ Uhlenbeck always maintained
that the 2nd law is an additional axiom of physics.´́ That’s why he
used to say that `̀ the frontiers of physics are all around us.´́ Lev
Landau in the introduction to the Statistical mechanics text has a sec-
tion on how the 2nd law is related to whether the universe is open or
closed.

Uhlenbeck disdained physicists who claimed to know where the
official frontier of physics was located.

I would generalize that to people in all human endeavors.
The most fundamental meaning to me of the 2nd law is that there
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is the vast space of the unknown—an entropy—that we should ap-
preciate far more than what we know along the lines of what Gödel
taught us about there being unprovable truths from a consistent set
of axioms.

Philosophers are more disposed to think about knowledge, per-
ception, memory, and intelligence with a completely different set
of analytical tools than us scientists and engineers who deploy ev-
idence, reasons, justification, belief, certainty, and inference. Their
insights and questioning is particularly germane to the current issues
in the developments of artificial intelligence/machine learning.

Figure 5.2: W. A. Beveridge, The art
of scientific investigation, Library of
Congress 57-14582, W. W. Norton
(1957).

Let me step back to Beveridge, who Snow quotes often in his essay.
He had a simpler message, a modified form of the class-room peda-
gogy with the different ways that one thinks through: imagination,
intuition, and reason added in. I could add many more to this. But,
this is all standard dogma.

Popper is further back in time, and is more grounded. He says
scientists proceed by falsifying scientific claims. This by trying to
prove theories wrong. Descartes, way back in 1633, wrote The world,
offering an account of the universe, how vision worked, how mus-
cles moved, how plants grow, how gravity functions, and how God
got everything spinning in the first place. Positing this is enough to
pounce and work on it. This is certainly true also for many hypothe-
ses. It was specially so in in the past, and generally applicable in
disciplines that still do not have sufficient mathematical and physi-
cal underpinnings. So, it certainly reflects quite a bit of even current
scientific undertaking related to biological sciences.

Paradoxes and creating imagined conditions with contradictions
is a very standard tool in mathematics-and-physics-oriented proce-
dures. The 2nd law sprouted an industry of science, and it is still in-
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Figure 5.3: K. Popper, The logic of
scientific discovery, ISBN 0–415–27843–0,
Routledge classics (1934).

tact. The reason being the vast unknown that the 2nd law represents.
This is a point that Snow misses. This is the power and message of
the 2nd law with its science and society meaning.

Figure 5.4: T. S. Kuhn, The structure of
scientific revolutions , ISBN: 0-226-45807-
5, U. of Chicago, (1962).

Kuhn believed that scientists work to prove theories right, ex-
ploring and extending until progress stops. The Pasteur’s quadrant,
Pasteur having been in three of these quadrants where Kuhn intro-
duced demarcation lines was interested in understanding the basic,
yet also in driving control to solve issues.

A university engineering researcher’s interests may fall between
finding things out and using things. Enhancement of the knowledge
and the utility. It is not likely that many single individuals fall within
the Pasteur cell since both basic and applied science are highly spe-
cialized. Thus, modern science and technology employ what might
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be considered a systems engineering approach, where the Pasteur cell
consists of numerous researchers, professionals and practitioners to
optimize solutions.

Between Popper and Kuhn, we have two very different scientific
temperaments. For Popper, scientific inquiry is a process of disproof,
scientists are the disprovers, debunkers and destroyers. Many work-
ing scientists are like Popper’s vision of a scientist, but there are
many more spending hours and hours, people with will, performing
brutal work to learn. There is a single mindedness bordering on be-
ing inhuman. Much of science work is boring. Generating data and
mining the data.

Kuhn thinks of true believers who promulgate wisdom until a
paradigm shift is needed, that is, a painful rethinking of assumptions
arises.

Figure 5.5: Pasteur’s quadrant and its
mapping in funding as implemented b
Vannevar Bush in creation of National
Science Foundation in 1950. Hard
boundaries have acquired spreads, but
this model is still intact seven decades
later. Other variations, with the same
basic construct, exists around the world.

An unfortunate consequence of the Kuhn halo has been the linear
model of funding agencies that started with Vannevar Bush and NSF
post-WWII. Basic advances are the principal source of technological
innovation. This model gets tweaking from time to time, acquires
spreads and distributions, but this linear form still remains. One
model cannot fit all. Linear probably is right for development to
production. But discoveries and new insights jump. Sometimes they
take for ever. Indeed the most momentous science-society discovery
and invention are entirely nonlinear jumping in a multi-dimensional
phase space.

Take for instance, another linear-like model, the Wallace-Darwin
theory of adaptation. When the big changes happens, a non-linear
event such as when the asteroid strikes the earth or we create climate
change based catastrophe, what one sees coming out on the other
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side is a mutation. Linear adaptation will not work. This is what a
paradigm shift is. It is not Kuhn’s paradigm.

Another current example is the sudden rise of AI/ML. As a name
this subject started in a Dartmouth 1956 workshop. Nathaniel Rochester,
one of the workshop’s main personality (along with McCarthy, Shan-
non, Simon, and other lumaries) was the architect of IBM 701, and
among the earliest to explore neural networks on computers. He
would visit our Bldg 801 from IBM Cambridge Labs to make sure
that the lab work with many early successes in theorem proving,
playing games, et cetera, continued. IBM had to be careful in public.
These were times when customers did not want to hear about elec-
tronic brains supplanting them. Computers can only do what they
are told to do had to be the messaging to the outside world. Joseph
Weizenbaum at MIT already had ELIZA interacting in Q&A with
human beings to pass the superficial Turing test. But, it is only 50
years later that suddenly this field has become transformational in
constrained technical domains—superior to humans—and buzzy in
broader domains because an average human is really not that diffi-
cult to fool. Market came to a point that despite all the large foibles
in large language models, it is big business. Real use of AI is not yet
a big money number. It has been an augmentation tool in use for a
considerable time now.

Market drove the research. Unlike the other science fields. There is
nothing Kuhnish in this giant change taking place right now.

Figure 5.6: A. Koestler, The act of cre-
ation, Hutchinson & Co. (1964)

Note also how suddenly the world and how we interact with the
world has changed with wireless, smartphone, internet, data data
everywhere, in this world, and now AI/ML feeding on it.

These are mutations of the type that Marshall McLuhan called,
`̀ Medium is the message.´́

A book that affected me very strongly when it first came out, was
my father’s copy of Koestler’s The act of creation, where he posits
`̀ bisociation´́ as the coming together of two unrelated thought
streams—matrices—to a new form. Comparisons, abstractions, cate-
gorization, analogies and metaphors being some of the mixing tools.

A joke, for example, in the form of a bait-and-switch mixes and
delivers something new. A parody is imitation for illuminating effect.
Being realistic enough that it initially tricks readers into believing one
thing, only to make them `̀ laugh at their own gullibility.´́

In science, the two streams may fuse and synthesize a new path.
Eureka is the Archimedes example. In arts, often it is a juxtaposition,
with both sustained.

Figure 5.7: Ballet (ou l’Étoile) by Edgar
Degas (Musée d’Orsay).

Take, for example, Edgar Degas, who says `̀ On voit comme on
veut voir; c’est faux; et cette fausseté constitue l’art,´́ that is, people
see what they want to see, it is false, and this falseness constitutes art.
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Ballet is a perfect metaphor of life, we are the young ballerinas, and
then there is the man behind the curtain in the dark suit.

Another beautiful set of examples are the the three paintings from
van Gogh—all made in 1888 as he struggled with his inner demons—
of his bedroom in Arles. Colors—not many of them realistic, reflec-
tions from thick and thin paint patches, wide and fine brush strokes,
but nothing of sharp precision that old paintings used to have draw
your attention to the post of the bed and from thereon to the simple
beauty of life. Powerful impressionism, where the viewer is forming
his own based on her or his path in life.

Figure 5.8: The three Bedroom in Arles of
van Gogh painted in 1988. The first is at
van Gogh museum in Amsterdam, the
second at Institute of Arts in Chicago,
and the third at Musée d’Orsay in Paris.
I have seen them, but never together as
here. There is a mood swing through
the colors.

Figure 5.9: The Milkmaid, at Rijsmuseum
in Amsterdam, and Girl with a pearl
earring at Mauritshuis in Den Haag.

Or we may go back in time to mid-1600s to The milkmaid and Girl
with a pearl earring, of Vermeer, another great Dutch painter. One is
of working life pulling you to the milk stream and from there to the
hard-worked face, and the second is of a rich girl with a focus above
and to the side of her right eye and yet there is this pearl calling
your attention. Again beautiful colors as with van Gogh, but here is
the lighting and specially the use of perspective that all the optics—
Hugyens is living during this time and the post-Kepler revolution is
in full steam—learning from science came and stood together.

Since ancient Greece, it has been clear that best thinking is cross-
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disciplinary. One needs to knit together insights from poetry, music, Remember Tagore’s Jodi tor daak shune
keoo na ashe, tobe ekla chalo re. It applies
to science and engineering too.

drama, philosophy, art, mathematics, natural sciences.
We all understand that a flourishing intellect is a well-rounded

one. Perhaps this is why scientists rebel and have hobbies.
Arthur Schopenhauer’s ideas on time and representation go back

to early 1800s.. Space and time are at the heart of both the 2nd law Schopenauer was among the earliest of
philosophers that posited—in conflict
with Kant—that the world is not a
rational place.

and the theory of relativity. The influence of these ideas in Einstein’s
development of general relativity are well recognized. Einstein, since
his youngest days, had a clear appreciation of philosophy. Einstein
had apparently even read Kant’s Three critiques—of pure reason, of
practical reason and of the power of judgment—when he was 15. The
Einstein-Podolsky-Rosen paper on entanglement, written in 1935, is
a beautiful expression of this learning, centered as it is on what is
reality, what is locality, and this is now nearly hundred years later
the starting point for much that we do in quantum computing and
communications.

Philosophy can provide methods for producing new ideas, de-
velop interesting perspectives and certainly help with critical think-
ing. Philosophers have tools and skills that scientists are not trained
for but need. Examples are conceptual analysis, attention to ambigu-
ity, accuracy of expression, looking for and finding gaps in standard
arguments, coming up with new perspectives, spotting conceptual
weaknesses and the search for alternative explanations.

So do writers as virtual philosophers. Hesse says in the essay My
belief, `̀ The fact that my Siddhartha puts not knowledge but love
ahead of everything, that he rejects dogma and makes the experience
of unity the central point,´́ is something I can agree with with love to
include love for finding things out, as Feynman would say.

Similarly Somerset Maugham, who was an obstetrician and drew
on his experiences in the London slums and the poorest working-
class people, writes, `̀ I was in contact with what I most wanted, life
in the raw.´́ Later in life, he recalled the value of his experiences:
`̀ I saw how men died. I saw how they bore pain. I saw what hope
looked like, fear and relief; I saw the dark lines that despair drew on
a face.´́

In early years, Hermann Hesse was drawn to Nietzsche’s theory
of aesthetics for a period, and forever by his use of language. The
enthusiasm for aesthetics was replaced by a more general interest in
Nietzsche the man and poet. Nietzsche in turn to Richard Wagner.
These show in the writings.

Following the WW1, one can see the Nietzsche’s theories of cul-
tural disease and of decadence being explored in Hesse’s mystical

Cultural disease is a common affliction
in science and engineering. It is most
obvious currently in engineering and
computer science driven exploitation
of us and our privacy to appeal to our
basest desires. AI is no Übermensch.novels. This gives insight most of us have difficulty with. Hesse says

to his imagined Nietszche, `̀ Perhaps you seek too much. That as a
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result of your seeking you cannot find. My entire life was—and, for
the most part, continues to be—about seeking and striving. I’m no
Buddha, but it is still possible, even for men like me, to catch sight of
him occasionally in others.´́

Artists and scientists perhaps seek too much, but it is a 2nd law
journey.

This Hesse-Nietsche interlude points to me that the process of self
discovery requires an undoing of the self knowledge, which one is
assuming one has. Becoming is the ongoing process of losing oneself,
a random restart—as in a Monte Carlo calculation—and finding
oneself. `̀ He who has attained to only some degree of freedom of
mind cannot feel other than a wanderer on the earth—though not as
a traveler to a final destination. For this destination does not exist,´́
said Nietzsche in Human, all too human.

This is so true in scientific pursuits.
I should end this metaphysical start with Weinberg’s strong reser-

vation that philosophy is more damaging than helpful for sciences.
Although it might provide some good ideas at times, it is often some-
thing that scientists have to free themselves from. Some scientists,
Stephen Hawking being one, even argued that the big questions have
passed on from philosophers to scientists.

I don’t agree.
A theory of everything can never be a theory of everything. Gödel

has proscribed it. The best we can do is strive, use all the clever ap-
proaches we know, discover, pull the learning from different human
endeavors and keep making progress.

It is the essence of life to be dynamic and changing.

Figure 5.10: A. A. Flexner, The useful-
ness of useless knowledge, ISBN 978 0

691 17476 1, Princeton-Oxford (1939,
Harper’s Magazine).

Abraham Flexner, who headed the education group at Rockefeller
foundation, and was the first director of Institute of Advanced Study,
single-handedly turned the fortunes of American science in the pre-
WWII period by being the quiet-in-the-background sponsorer of the
escape of the numerous scientists from Nazis and Nazi-occupied
Europe. He speaks Koestler-like, before Koestler, of the incredible im-
portance of the usefulness of useless knowledge, which at some point
in time are streams that come together leading to the blossoming of
something entirely different from anything previously imagined.

To participate in science, you must produce the evidence to argue
with. This is almost workman like. And it eliminates bias. It self
corrects. But, it is also viewing questions through taste, personality,
affiliation and experience. I was lucky in these.

I would like to pull this together to argue forward what I have
promised as an objective of this essay on science and engineering
pursuit.
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5.3 Information is the foundation

My first thesis is that the world started with information. Sounds,
singing, sentences, tactility, many of these things that make us came
later. Trees and plants exchange information, it may be through roots,
through pollen carried in the wind or by butterflies, through trans-
fer of chemicals whether for defense or offense, and others. Fireflies
communicate and dance. Organisms developed and mutated to se-
lectively exploit the information. An information form was created.
Information arises when something is assigned a significance in some
way by a cognitive agent.

Information is an artifact.
It is a way of describing the significance for some agent of in-

trinsically meaningless events. We invest the stimuli with meaning.
Without this investment, the stimuli is informationally barren.

Information however should not be confused with meaning.
Information is an objective commodity. Its generation, transmis-

sion, and reception does not require interpretive processes.
One can posit a framework for understanding how meaning can

evolve, how genuine cognitive systems—those with the resources
for interpreting signals, holding beliefs, and acquiring knowledge—
can develop out of lower-order and purely physical information-
processing mechanisms. The higher-level accomplishments that we
associate with intelligent life carry a manifestation of progressively
more efficient ways of handling and coding information. Meaning
that the various constellation of mental attitudes that exhibit it, the
interpretations, are all manufactured products.

Information is the raw material.
For those in electrical engineering, computer science or physics,

this is a small jump. We think in terms of evolution of beliefs with
information represented through Bayes relationship, graphs, flow
charts, programs, and feedback loops.

For philosophers, this will be a big jump since they are disposed
to think about knowledge, perception, memory, and intelligence
with a completely different set of analytical tools: evidence, reasons,
justification, belief, certainty, and inference.

Information is a semantic concept. What is knowledge? A tradi-
tional answer—an epistemic answer—is that knowledge is a form of
justified true belief.

Knowledge is information-caused belief.
You need to know the day of the week, or what it was yesterday, to

tell the date by looking at a calendar.
What one learns, or can learn, from a signal (event, condition, or

state of affairs), and hence the information carried by that signal,
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depends in part on what one already knows about the alternative
possibilities. This is a conditional probability.

Let me give another example. A modified form of the famous
Monty Hall problem, but now with a million doors, behind one
of which is a prize. A million tickets have been sold with different
unique door numbers to us million people.

From an information-theoretic standpoint each of us, assuming
this is a fair contest with each of us having an equal chance, is in the
same position. The amount of information associated with my having
a winning ticket is about 20 bs. The amount of information associated
with holding a losing ticket is nearly zero.

The amount of information associated with holding a losing ticket
is nearly zero but is not precisely zero. We don’t have any other
special information on the outcome, none of us has received any
quantitative small piece of information, which per the present view
of knowledge, is essential to knowing whether one going to win or
lose. This is the same as the description in

the state function of quantum mechan-
ics. Only an observation leads to the
eigenvalue and eigenfunction. Once
there is an outcome we have gone from
a prior to a posterior. Act of observa-
tion, an event in time, has reduced the
system to a state about which we know.
The past has now become classical and
one has determined it.

The information-theoretic condition on knowledge has explained
why nobody knows he is going to lose in this fair contest. Everyone
is justified in being pessimistic, but no one has access to the informa-
tion that would permit them to know they are going to lose. We live
this Monty Hall environment throughout our life, albeit the random
and the causal both present.

What I also do not want you to do is to interpret this to be a form
of reductionism to information.

Information has appeared in the natural world through a rela-
tively simple ensemble of elementary ingredients obeying relatively
elementary laws. Conway’s game of life, Wolfram’ one-dimensional
automata have simplicity, chaos, complexity, birth, death, embedded
in them.

The possible combinations of nature’s elements, however, are stu-
pefying in number and variety, and largely outside the possibility
that we could compute or deduce them from nature’s elementary in-
gredients. These combinations happen to form higher level structures
that we can in part understand directly. These we call emergent.

They have a level of autonomy from elementary science in two
senses. We can study them independently. They can be realized in
different manners from elementary constituents so that their ele-
mentary constituents are in a sense irrelevant to our understanding
of them. One does not need to climb down the rabbit hole of high
energy physics to understand much that is emergent in our natural
world. It would be useless and self defeating to try to replace all the
study of nature with science. But evidence is strong that nature is
unitary and coherent, and its manifestations are—whether we under-
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stand them or not— behavior of an underlying physical world. Thus,
we study thermal phenomena in terms of entropy, chemistry in terms
of chemical affinity, biology in terms functions, psychology in terms
of emotions, and so on. But we increase our understanding of nature
when we understand how the basic concepts are grounded in science
as we have largely been able to do for chemical bonds or entropy.

It is in this sense, and only in this sense, that I am suggesting that
meaningful information could provide the link between different We have all these physical notions of

information from a scientific viewpoint.
Shannon a demi-god of electrical en-
gineering because of the numerous
implications of this surprisal quantifi-
cation into his equation(s). But what
is meaning? Meaning I see as what is
in the moment and the flow in infinite
time. It is position and momentum.
It is information in the Shannon, and
Renyi, and Fisher, and all the others
plus flow, which is evolution for the
natural world.

levels of our description of the world.

5.4 Causality and autoanthropomorphization

Time and space are another interesting
aspect. More on this some other time.

What I do, or much of what I do, is elaborately orchestrated by what
I believe and want, by my intentions and purposes, by my reasons for
doing the things I do.

Fred Detske in Explaining behavior discusses the following example
to illustrate the importance of information from the perspective of
psychology and philosophy.

Often when I move, I have a reason for moving. I get up from my
computer desk to straighten my back and get a little exercise through
moving or I go to the kitchen because I want a drink and I think I can
get one there. If I don’t have those reasons, if I don’t want this and
think that, I would not move. At least I would not move when I do,
where I do, and in quite the way I do.

My lips, fingers, arms, and legs, those parts of my body that must
move in precisely coordinated ways for me to do what I do, know
nothing of such reasons. They, and the muscles controlling them, are
listening to a different drummer. They are responding to a volley
of electrical impulses emanating from the central nervous system.
They are being caused to move. And, like all effects, these same
bodily movements will occur in response to the same causes, the
same electrical and chemical events in the nervous system, whatever
I happen to want and believe, whatever reasons might be moving me
toward the kitchen.

If, then, my body and I are not to march off in different directions,
we must suppose that my reason for going into the kitchen—to get
a drink is, or is intimately related to, those events in my central ner-
vous system that cause my limbs to move so as to bring me into the
kitchen.

What appeared to be two drummers must really be a single drum-
mer.

But does this mean that my thoughts and fears, my plans and
hopes, the psychological attitudes and states that explain why I be-
have the way I do, are to be identified with the structures and pro-
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cesses, the causes of bodily movement, studied by neuroscientists? If
so, aren’t these scientists, as experts on what causes the body to move
the way it does, also the experts on why we, persons, behave the way
we do? How can their explanation of why my body moves the way
it does be different from my explanation of why I move the way I
do? But if these are, indeed, at some deep level, the same explanatory
schemes, then the apparently innocent admission that neuroscientists
are (or will someday be) the experts on why our bodies move the
way they do appears to be an admission that neuroscientists are (or
will someday be) the experts on why people move the way they do.

If there is really only one drummer, and hence only one beat, and
this is a beat to which the body marches, then one seems driven, in-
evitably, to the conclusion that, in the final analysis, it will be biology
rather than psychology that explains why we do the things we do.

What, then, remains of my conviction that I already know, and I
don’t have to wait for scientists to tell me, why I went to the kitchen?
I went there to get a drink, because I was thirsty, and because I
thought there was still a cold water left in the fridge. However good
biologists might be, or become, in telling me what makes my limbs
move the way they do, I remain the expert on what makes me move
the way I do.

Or so it must surely seem to most of us.
To give up this authority, an authority about why we do the things

we do, is to relinquish a conception of ourselves as human agents.
This is something that we human agents will not soon give up.

This is the conflict between two different pictures of how human
behavior is to be explained. Reasons—our beliefs, desires, purposes,
and plans—operate in a world of causes, and to exhibit the role of
reasons in the causal explanation of human behavior.

My own interpretation in a different language of science is as
follows.

It is information and its meaning that is connecting the reason
people have for moving their bodies and the cause of their bodies’
consequent movements.

My reasons, my beliefs, desire, purposes, and intentions, are—
they have to be—the cause of my body ’s movements. These are my
evolutionary laws. They have developed over time and they came
partly coded in at birth just as the number sense that morphed into
an ability to add numbers, symbolically manipulate, that is, build
algorithmic evolutionary laws, or of other symbolic characters to
words and phrases and sentences to a meaning through a grammar,
which is another example of evolutionary law.

Between information that I perceive, my evolutionary laws, and
my prior beliefs is the definition of me. How I behave in different cir-
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cumstances depends on causal and random factors. Thermodynamics
and statistical mechanics has much to say about this based on infor-
mation. The thermodynamic arrow points towards higher entropy
and corresponds to irreversibility. It is a thermodynamic time, it is
pointing towards the future, and it is the one we experience through
our information-based mechanisms.

There is also a notion of epistemic time with an agential temporal
arrow in that we know the past better than the future.

The cause to effect is also an arrow, we can act on the future but
not the past. That we can affect the future and not the past, that any
intervention must not violate past correlations. The laws of nature
are reversible, but causation is not. Thermodynamic time clears this.
Any intervention affecting the past generates thermodynamically
inaccessible states, making them irrelevant histories. The biosphere’s Our own thinking is dissipative, so

again guided by the time-oriented
entropy gradient.

entropy gradient gives the time orientation to causation.
It was at IBM’s research laboratory that I started recognizing in-

formation’s importance as we discussed different subjects—I used
to enjoy sitting with people I didn’t know or people I hadn’t seen
before—and of course Landauer’s information is physical and Ben- I started thinking about the

conjecture—a corollary—that `̀ Physical
is information,´́ that I dwelt on in this
past section during that time, and my
belief has only strengthened. Over time
I have taken to calling it my corollary.
It is not proven, arguable in the same
way as `̀ information is physical´́ and
`̀ it from bit´́ of Wheeler are.

nett’s resolution of Maxwell’s demon came up often. Even in dis-
cussions related to the observations of Mendelbrot’s self-similarity
fractals, Mandelbrot’s table was always attractive for finding new
things in mathematics. This information gathering, the discussions
with many of the luminaries of that time in sciences who were al-
ways willing and enjoyed serious discussions, as well as a laugh,
and dropping in the library to look at the day’s intake of publica-
tions from various disciplines, was a constant source of meaningful
information.

I realize that I have turned the human experience into an abstract
form in this process.

But, I think it is important to realize that all the social phrases we
use, upbringing, values, ethics, morality, providing a safety net, keep-
ing our children protected in their childhood so that they can grow
healthily, our need to explain, or explain away, our aspirations, our
limitations, our path based on our starting point of the life trajectory,
can all be seen through such an informational lens. It is agnostic and
subject to proper scientific challenging.

5.5 Science and engineering in society

Societies deal with their problems based on political and economic
expediencies, with some regard to cultural and moral convictions
that have developed in the collective over time. These are all informa-
tional too. Politics is based on building vote banks, whose organiza-
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tion very much depends on what kind of political process is in place.
First past the post or rank choice, even disenfrenchising by making
voting difficult, and who controls the media, or if media controls the
politics through its ownership. This is all information. Economics is
numbers.

All of these expediencies affect the conduct of science. It is forced
between guard rails. It is valued, nevertheless, because it does make a
better-off life and development possible.

By spending time around the world, and observing the academics
and the workings in Europe, at many of the best schools in USA,
here at IIT and IISc, and watching how they fit in the social frame-
work and in research and development, I would like to particularly
stress what Germanic countries—my experience being in German
and Switzerland—do so remarkably well. I see something similar in
Scandinavian countries, and in a different form in France. The con-
tinental Europe, I have found, to be a remarkable place for learning
and development of oneself as well as a young person’s mind.

There are multiple reasons for this of course, including being
reasonably well off, but there is the organization, the flow, and the
stress—all seamless—that I find truly remarkable. This is what makes
these countries far more equitable than USA can aspire to be. It
breaks the perpetuation of class, provides those with unique capa-
bilities born poor the same chance that all rich have, pulling up the
brightest minds regardless of their origin by giving them access to
the same demanding education.

In Germany, people don’t go and live in communities where the
school is better as they do in USA, or the rich don’t send their chil-
dren to private schools as in England or India or now increasingly
so in USA. All schools are of similar high quality. The plumber’s
son, the doctor’s daughter, and the teacher’s child go to the same
school, and they live together in the same community. Standards ex-
ist and students are expected to learn. Mathematics is rigorous. At
the high-school-equivalent level, one has a choice, go to hochschule
geared more towards professions, or university, which is academic.
University is nearly free, but you have to meet standards as a student
through the examinations, else you switch from the more rigorous
courses. It is possible to change paths if you wish to too.

Then there is the research and development part of the federally-
funded system. Max Planck Institutes that are simply the world’s
best research organizations, where the scientists are from all over the
world. The process of choosing people is very clear. Hire the best
from around the world to lead. And now that there is a record of
past few decades of success, they do get the best. You just have to see
the Nobel Prize lists of the past few decades to see that Germany has
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brought itself back from the decimation that its academics suffered
during the Nazi period. Germany also has Fraunhofer Institutions
that support bridging the gap between research and products, where
academics and industrial organizations work together. Max Planck
Institutes are pure research based institutions in different subject ar-
eas spread around with critical mass. The expectation from them is
to be the best, bar none. Same for Fraunhofer in industry-oriented
work. One doesn’t see the caste system of pure versus applied, the-
ory versus experimental, academic versus professional, or any other
such division. The precision machining practice is as valued as the
intellectual output of a bright mind. And the whole system is funded
in a such a way that there is flow that is commensurate with the
needs of the country. This is the German way.

With some tweaks and changes, it is also the way in Switzerland
and Netherlands. France is different, it is a larger and more diverse
country, but it too has found a way to promote research and good
education, both of the elite world-leading intellectual kind and the
hard-working analytic type, within its schooling system by keeping
rigor of mathematics, reasonable salaries and respect for the teachers,
and by placing many of the CNRS laboratories at universities that are
good in that subject area.

This is information flow, and development, organized so that mu-
tual information is maintained in the entire hierarchy. Not attacking
the problem of the day and constantly tying knots. Conservation is
conservation of flow for us in sciences, as I often stress to my stu-
dents.

5.6 Checkov’s last chapter

Science is objective. Scientists are not. We mine information. We have
our own struggles and teutonic fights.

We breathe paradoxes and contradictions.
Paradoxes are a philosophers’ tool.
Pseudo-randomness is a beautiful metaphor for how our own

perception of free choice can emerge from underlying determinism
as we navigate through the world. Just as a sequence of pseudo-
random numbers appears freely chosen if you do not have access
to the program and seed, so can human actions appear. This is the
quandary I see answered in the Degas painting.

You hear the name Renoir, and you smile and see the whole world
resolved into circular brushstrokes, rosy, bright, happy. You say
`̀ Schopenhauer´́ and see this same world represented by lines of
suffering men who during sleepless nights have turned suffering into
a deity and who with solemn faces move down a long, rough street
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leading to an infinitely quiet, infinitely modest, sad paradise, so says
Hesse in his essay Language written in 1917.

The best science listens keenly to philosophy, so must the best
philosophy keenly listen to science. This has certainly been so in the
past: from Aristotle and Plato, to Descartes and Hume, Kant and
Hegel, Husserl and Lewis, Heidegger, the best philosophy has always
been closely tuned into science. No great philosopher of the past
would ever have thought for a moment of not taking seriously the
knowledge of the world offered by the science of their times. Science
is an integral and essential part of our culture. It is far from being
capable of answering all the questions we would like to ask, but it is
nevertheless an extremely important one.

The same strong statements can be made regarding poets, artists,
writers, and others whose major tool is their mind, and through it
they affect our being.

This is a mixing of a brew of complex ingredients, and whose re-
sult in turn is also complex, but with interesting emergent properties.

Its corollary, often posited as Ockham’s razor, is that plurality
should not be posited without necessity. This principle gives prece-
dence to simplicity: of two competing theories, the simpler expla-
nation of an entity is to be preferred. Given that we do not know
the unknowns, just choosing the simplest theory does not satisfy
me. Our axioms-based view is based on building the simplest ed-
ifice that is predictive. Explaining is the reverse from an observa-
tion. Inferences, predicting what will happen, however often fall into
Bernoulli’s fallacy, where objective probability interpretations lead
to incorrect conclusions through a trust placed in p-values, even if
false-positives and true-negatives are all being observed. This is the
tragedy of several medications, where profits takes precedence over
effectiveness and no-harm, and many social and economic policies.

I turned to ChatGPT to check this simplest maxim to see how a
whatever-is-written-on-the-web is legitimate to get it to complete,
`̀ USA detonated two nuclear bombs over Japan because ... .´́ This
sprung the lines `̀ the US government made the decision to use the
atomic bombs as a military strategy during World War II in order
to force Japan to surrender and bring an end to the war. ...,´́ an
Ockham-like simplest statement, which is terrifying for humanity
in the lesson it imparts. Japan was bombed also because USSR troops
were starting to amass in Vladivostok, the debate was on about the
new world order, I hope also that the morality of the killing of inno-
cents must have been a counter-factor, and several other reasons. To
give precedence to one, and then it becoming a part of the indoctri-
nation, is among the reasons that we we have the long arm of nuclear
driving global wars and tribal rivalries pervading nearly eighty years



5: cultures 143

later.
Mencken had a proper rejoinder to Ockham, `̀ for every complex

problem, there is an answer that is clear, simple and wrong.´́
I went to an India-related question that I have always been inter-

ested in since Naipaul opened my mind’s eye at a tender age of 9.
The question of `̀ Did the participation of Tatas and Sassoons cause
the indentured labor migration from Bihar?´́ I get a long stream of
meaningless verbiage first by stating that they did not directly cause
(correlation?), but that the conditions did. That Tatas and Sassoons
did not directly recruit indentured laborers, and so on.

So, to understand the level of any depth here, I ask `̀ Why did the
British indulge in Opium trade in 1800s through early 1900s?´́ The
answer was `̀ ... for economic and political reasons.´́ Nowhere in the
answer is any mention of the moral-compass-bereft `̀ intelligence´́ of A computer science teacher will say,

garbage in, garbage out. GIGO is a
technical term.

killing two birds with one stone. Get the Chinese hooked on drugs,
and the Indians enslaved for sugar farms all over the world. I was
delighted a few years ago to read The sea of poppies by Amitava Ghosh
as a writer’s exploration of the dark ages for so many for so long in
this country.

To Mencken’s rejoinder, I add the corollary, `̀ for every complex
problem, there is an answer that is obfuscating, complex, and also
wrong.´́

Of course, Tatas and Sassoons are complicit, and this is buried
under the rug of all conformist writing.

This is lack of intelligence. It is lack of critical capacity to think,
to state not only the case and what could be the case—a description
followed by a prediction— but also what the counterfactual is. What
is not the case, and what could or could not be the case. This is what
constitutes an explanation, which is an indicator of intelligence.

In the sequence of earlier essays I have
emphasized the description of state—
of static and flow as integral to its
description—and of evolutionary law
in describing the dynamics. It showed
up both in analytic forms as well as
in graphs. As in physical description,
where local and global effects happen,
this state behavior description holds in
real life too in local and global form.
When young, we all want to change
the world through actions unfolding
over distance. Around my 50s, I turned
inward-bound, and let global become
largely a diffusive effect from local.
Reduce, reuse, recycle, in that order is
a common theme accepted by many
people I admire. I have added to it
two more to make five commandments
as evolutionary rules. Reduce, Reuse,
Recycle, Rant, and Rile. The first thee are
self-actions in the state. The fourth is
to let others—adults—know when one
observes an unacceptable abuse, and
the fifth is an escalation in egregious
cases. The last two are a form of civil
disobedience and my satyagraha.

That objects fall to the ground because that is their natural place,
an Aristotelian view, raises a stream of questions. An explanation
that mass bends spacetime is highly improbable, but tells us why the
object falls to the ground. Intelligence is thinking and expressing improb-
abilities, which aligns with what I have argued about information.

Jorge Luis Borges says, `̀ In a time of great peril and promise is
to experience both tragedy and comedy, with `̀ the imminence of a
revelation,´́ in understanding ourselves and the world.

For science and engineering to do well for the society, it is impor-
tant to always approach it openly, based on information sans bias,
with equal opportunity for all. It is a magnificent cauldron, but we
don’t know which combination of ingredients is healthy and tasty
and flavorful, and which is poison. So also proceed with caution.





6
Semiconductors: Lessons from the past and what it says
for semiconductor manufacturing

That semiconductors have through devices, circuits, systems, computing,

communications and information exchange made the modern world possi-

ble is a sound and arguable claim. But, we came to this point dynamically.

New inventions, new technologies, new ways of attacking the information

processing and transfer and its evolution to knowledge have all pushed

this evolution. Wisdom, which follows, is very much a particular society’s

optimization—like a minimization constraint—upon which it may act (or

not). The earliest computing companies, Burroughs to Univac do not exist as

such, nor do those who brought about the minicomputers such as DEC, or

microcomputers such as Sun; yet computing is the heart beat of the society.

Semiconductor manufacturing is very capital intensive, and it demands ex-

perience and precision knowledge. Even for USA, the answer was focus on

design and let TSMC build it. But, societal tensions or wars can intervene as

one sees right now. This is a very serious issue for any nation. Semiconduc-

tors are like agriculture. One can not be confidently independent without the

ability to build and deploy. In this broader worldly context, I would like to

discuss commercial principles that have guided the evolution of the informa-

tion enterprise, and look at the open big areas of the future, to speak to what

needs to be the broader focus of design, development, manufacturing, and

associated computational developments for the coming generations.

The last writing—of the K R Sarma lecture—argued that `̀ information
is physical´́ —a Landauer and Wigner thesis—and its corollary—
`̀ physical is information´́ as an agnostic lens to view nature and
our world and the way humans—nature more generally—work
through in the society. Information is an artifact that symbolizes
some agent of intrinsically meaningless events. The higher-level ac-
complishments that we bandy as intelligent life carry a manifestation
of progressively efficient handling and coding of information. Emer-
gent properties arise in this progression, where understanding at

Science and engineering in the world
© Sandip Tiwari, (2023)
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one level does not need an understanding or description at a lower
level. Atoms may form us and all the material objects around us,
messenger RNA and other nucleic acid forms may be essential to the
creation of the coding that builds life, but they are not necessary to
explore cognition or cognition impairment, or poetry or so many of
technological creations. Knowledge builds on the accumulation and
distillation of information, information exists in all so many different
forms and evolves in emergent ways, where the emergent behavior
stands on its own and is explorable on its own.

I will try to build on this agnostic view to debate the topic of pur-

My wife Mari, who keeps me inbounds,
remarked that preaching should be
employed in discourse very rarely for
it to be effective. It is true. Passion,
while it should be appreciated and
even promoted, needs to be inward
bound. I will only add that in education
and at an educational institute, some
of the worldly constraints should be
relaxed a bit. A Socratic dialog can
only be successful with thought, rigor
and passion in all the parties. This is in
teaching and research too. Information
is central to this, and our willingness
to learn, recognize our past errors,
learn from the change, and adapt is
important to making sure that this flow
process that leads to progress in all its
forms continues and improves with
time.

suit of semiconductors and semiconductor manufacturing in India.
While this objective is specific to semiconductors, it exists in a global
environment. One cannot look at it narrowly without looking at the
whole.

Development takes places in an open system, one that is dynamic
and has open boundary conditions. How a nation develops—not get
trapped in some minimum of a generalized coordinate—is a matter
on which all have opinions, and given that this is an inferential task
steeped in sociological, economic, cultural milieu of the country
interacting in a complex world, predictions always teach us how
wrong we often are. Science, particularly through the use of statistics,
and arts through its exploration of the human drama, both have
something to say about limits to what we can infer. All that we can Bertolt Brecht, in his 1938 play of

Galileo Galilei and the eternal clash
between dogma and scientific evidence
makes the statement, `̀ The aim of
science is not to open the door to
infinite wisdom, but to set a limit to
infinite error.´́

do is bootstrap from information one has. This is the only way to

Bootstrap and its refinements is a statis-
tical technique due to Professor Bradley
Efron which draws inferences by mod-
eling a resampling and inferences from
the resampled data leading to a mea-
surable quality of true sample from
resampled statistics.

avoid sclerosis that is the affliction of many a societies.
Science, when done right, is a tool for limiting large errors. It

limits these by drawing on information and power of testability of
predictions in model building from the current collection of informa-
tion. This writing should be viewed as one way of looking through
information, which doesn’t explain everything, but places bounds
that constrain going badly wrong.

From a few transistors and resistors in the earliest integrated cir-
cuits from Texas Instruments and Fairchild, the state of the art to-
day are the Nvidia H100 and Biren BR100 with nearly 10 billion
transistor processors at the heart of much that is happening in the
computation-based learning and inference world. The world lives off
this information. It is pervasive. It is passing through the computers
on to the desktop, it is in all the advertising we are bombarded with,
it is behind the checkout counters in all the shopping, and it rules us
through our smartphones that best embody McLuhan’s, `̀ medium is
the message.´́

This evolution of semiconductors has been an epic journey, of ebb
and flow, companies have come and gone, Fairchild does not exist

Fairchild was acquired by On Semi-
conductors, an offshoot of the micro-
processor merchant Motorola, which
also acquired IBM/Global Foundries’
semiconductor operations in upstate
NY.and Texas Instruments is a specialty analog-digital automotive and
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Figure 6.1: An early integrated circuit
of few transistors (from Fairchild
semiconductor) and a current advanced
integrated circuit (from Nvidia made
at TSMC) with 10 million times more
transistors.

phone oriented semiconductor manufacturer. Even Intel, an offshoot
from Fairchild, nearly went under in late 1970s and early 1980s, and
is again tottering. This is a dynamic system with open boundary
conditions in the midst of global competition and changing models
for effectiveness as complexity keeps scaling up and new emergent
behaviors arise. Semiconductors are part of a dynamic system with open
boundary conditions.

Semiconductors have tremendous benefits that we all see through
information’s pervasiveness. But, as with all technologies, it has
caused much by way of hurt. A particularly damning ill effect has

been the loss of social interactions
of children playing with each other.
The physical development and social
development at a playground—a
microcosm of young life—taught one
losing and winning, learning from
both, and how to find common ground
in midst of the tensions of the social
playground. An appalling recent
statistic is that nearly 10% of USA
high school teenagers have attempted
suicide ( www.ft.comcontent77d06d3e-
2b9f-4d46-814f-da2646fea60c). This is
isolation appearing in childhood, and
all the addictive pressures brought
by social media made possible by
semiconductor technology.

The argument of this writing is in two parts.
The first part deliberates the world environment and the con-

strained open boundary system that a country is trying to grow in.
It explores what the lessons are from the worldly environment, what
the lessons are from within the country, and in a similar vein the
lessons from semiconductors’ and information’s seven decades march
to put down some markers. India’s freedom and semiconductors’
modern beginnings are nearly coincident making for an interesting
viewing of a country and industry dynamic.

The second part than tries to connect this discussion to the choices
for a path to a sensible future.

The information edifice that makes the modern society is built
on the semiconductors. Semiconductors make the physical struc-
ture possible. Communications through the cell phones connected
to the networking infrastructure, the reliability and safety and secu-
rity checking of all communications-based transactions are all based
on semiconductors. All the computing, the transactions one makes,
the financial bookkeeping, the back-office Aadhar or UPI functions,
even education through remote processes, are computing meshed
with communications. Our gathering of a lot of data, much of this



148 engineering & science & in our world: this i believe.

relying on sensors of different kinds—temperature, fog, rain, people
moving, traffic flow, transport such as railways, et cetera—followed
by decision making based on this data is all semiconductors based. A
nation’s defense requires monitoring, a quick reacting to the obser-
vations, controls, operations, radars, operation of weapons, et cetera.
This too is all semiconductors based. No traffic—from railways to
cars—would be possible without the semiconductors performing vi-
tal sensing and control tasks. In the west, cars, specially those with
self-driving augmentation, are really semiconductors on wheels.
Semiconductors are like agriculture. We cannot live without it any-
more. It is essential now to our being. In addition to agriculture, it is also like

jewelry. Compactness means it can be
hidden in decorous objects, but more
so, it even appears as a status symbol.
On the IITK campus, as I walk around,
nearly a quarter of people seem to have
either a phone near their ear or held
in their hand. In the West, changing a
model to the higher end model every
year seems to be a marker of success.
Strange, but people like Arnault and
others in France and Italy have thrived
for generations by catering luxuty to
the upper echelons of the society. There
is tremendous profit in luxury built on
exclusivity. Between agriculture and
jewelry, one has covered both ends of
the social spectrum!

6.1 The two marshmallows principle

One of the most interesting human behavior and development study
was the Stanford marshmallow experiment of Walter Mischel from
the 60s and 70s. Marshmallows are sweet egg-based fluffy concoc-
tions that can be partially melted on a fire. By placing it in between
two sweet crackers, one has a cookie that never fails at a children’s
camp fireside gathering. In the experiment, 4 year olds were pre-
sented with two options. Ring a bell to call in the experimenter and
eat the marshmallow. Or wait until the experimenter returned—
about 15 minutes—and get two marshmallows. A reward now or a
bigger reward if patient. Some children broke down and took the one
marshmallow option. Some were able to delay gratification and got
two. Longitudinally, when the children reached teenage years, the
ones who had deferred showed higher SAT scores, were more self-
assured, more self-confident and had better self worth. Their parents
thought them more mature, better at handling stress and planning
and reasoning. Later on in life as adults these two-marshmallow
children were less likely to have drug problems, less divorce, were
less overweight, and for each minute that a preschooler could delay
gratification, they also had 0.2% less body mass index 30 years later.

I am going to call this the the two marshmallows principle. Foregoing
short term reward for higher payoff in future really matters. Resist
temptation to have persistent benefits across dimensions. I will add
to it as my own personal experience that hard work itself, the learn-
ing journey and then reaching the end of a journey are all a pleasure
unlike any other. Just talking ad infinitum is dysphoric.

The two-marshmallow principle holds lessons for individuals, it
holds true for us in our work, it holds for us as a collective in insti-
tutions, it holds for our families, our countries, and our institutions.
There is a short-and-long, fast-and-slow feature to this principle that
I will return to later. Patience as a virtue can not be emphasized
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enough.

6.2 The parable of IBM

Story telling has value but should be used with caution. Business
world thrives on story telling. It is also a convenient way to hide
fallacies. A current example is the present financial environment and
difficulties in the West, likely to be quite long term, that partly arose
from technology which the technology venture world thrives on.
Promises for the future are alway steeped in Brecht’s infinite errors.
The storytelling by venture capital and all the magical software-based
companies of apps prospered because the price of money was none.
This was intersection of two different domains of information, and
their merging wasn’t humanly understood since this intersection
had no historical precedent. Fast moving of money by new apps—in
private clubby social network environments—precipitated a crisis
that was long in making in financial governance. Two endeavors
intersected, venture business exploited it for nearly a decade, and
then precipitated a moving event starting with the collapse of the
Silicon Valley bank ending a long period of one kind of flow. This is
dynamics at work.

Figure 6.2: A world line of IBM in the
world with semiconductor emphasis.
The top half is for some important
events of introduction of technologies,
many invented at IBM, and bottom is
when IBM stopped doing something,
sold off businesses, or where competi-
tors disappeared.

The story in short form that I want to relate is that of IBM, where
I had the incredible luck and joy of working after schooling. Cau-
tion is warranted, the story is just to see lessons in it, and it is a
personal perspective. To me it illustrates some of the junctures in
time and space where choices have to be made because the existence
and growing is of a dynamic open boundary system. As a com-
pany, IBM’s origins go back to Hollerith and punch cards in 1880s.
Tabulating, clocks, and accounting machines was its business. It
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found its footing through the use of punch cards in census and the
7 3/8× 31/4 in 80 rectangular holes punch card that became an in-
dustry standard. Its first computer, 701, was based on vacuum tubes
circa 1952 a year behind Univac in its introduction. It flowered in
the decades that followed. The first compilable high-level computer
language, magnetic storage, and the first scalable computers with
reusable programs (the IBM mainframe S360) all appeared in the next
decade, and a formidable period for the company—not too different
from that of Google, Apple, Microsoft, with their walled gardens—
was born.

The blossoming was a combination of an incredible promotion
and marketing machine, a company that served its customers well
and provided a very sheltering umbrella for the best in the world
to perform research, where research was these folks’ main interest,
with some of it flowing to the world. It was in mid-50s that IBM
Research Laboratories were set up. There were innumerable tech-

Emanuel Piore, chief scientist of Office
of Naval Research where the early ideas
of computers—von Neumann’s com-
puter was supported by them as was
Eckert-Mauchley’s ENIAC at University
of Pennsylvania— came to place IBM
on strong scientific footing. The labora-
tory was first at Columbia University,
moved to Yorktown Heights, and then
expanding to San Jose and Europe.
During my time, I could watch Ralph
Gomory—an applied mathematician,
John Armstrong—an optical scientist,
Jim McGroddy—a semiconductor sci-
entist, and Paul Horn—a condensed
matter physicist—as heads of research.
Gomory, in particular, stood out in
being able to stand up for bringing out
ideas from the laboratory into the world
by promoting them in face of special
interests. Today’s smart cities go back to
traffic flow of 70s as an applied math-
ematics development in IBM Research.
In writing Python codes, I constantly
see the techniques and syntax that goes
back to the programming approaches
that came from that time. I noticed
that the more you know a subject, it
is certainly true that the more you see
the potential, but also that the more
is your bias towards the subject. Suc-
cesses and failures both get amplified in
consequent business decisions. By the
1970s, computing was going through
far faster changes as it democratized,
and ideas such as interactive computing
pioneered by MIT Lincoln Laboratories
and taken public by Ken Olson and
Harlan Anderson through DEC at the
beginning of this process—UNIX being
a major long term software offshoot
that lives underneath most of comput-
ing today—and so many others at the
intersection of semiconductors and
computing started taking over. The
dictum `̀ Ideas escape from research,´́
certainly seemed to prevail towards the
end of my time.

nology advances, from the first scalable—same program running on
all the machines—to magnetic drives, dynamic memories, reduced
instruction set computing, to SiGe and others all appeared from IBM.
Even the very first successes of machine learning/artificial intelli-
gence such as geometric proofs, or the Blue Gene machine beating
Kasparov in chess towards the end of last century are from IBM.
Through this cycle one can see IBM being ahead of others in tech-
nology discovery, technology usage, and also getting out of tasks
that became commoditized or were not necessarily central. It used
to make much of the equipment used in technology. It iteratively
stopped them. Any computing business that became competitive in
time, where technology was now available through all, it left or had
to leave. Laser printers or laptops or personal computers, and others.
By 2020, even the entire fabrication operation—a capital-intensive
and demanding task—was given away to Global Foundries. There is
much much more of course behind the story.

For a long time, the freedom, with sound management practices
of promoting excellence, made the research environment a frothy
and exciting place where ideas were constantly bubbling. At the
same time, as others started catching up, the same bane of large
companies—do not rock the cash cow—also played, and this slowed
IBM’s entry, even if the earliest work and inventions took place at
IBM, into new areas. Reduced instruction set computing and not
employing its own processors and operating system for personal
computers eventually reflected in the breaking open of a walled gar-
den in advanced computing at one end and personal computing at
the other. Large size, and resulting bureaucracy and hierarchy slowed The white collar culture, nobody can

be fired for buying IBM in the hay
days has the same whiff of white babu
culture transforming to brown babu
culture of at least during my first two
decades of life that I spent in India.

the decision making and the law of large numbers and averaging of
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distribution became ascendant.
This story is the story of a dynamic system and open boundaries

constantly at play. IBM still exists more than hundred years later,
perhaps will even prosper again as it changes. Over time, most of its
competitors have come and gone. IBM is not a media and advertis-
ing company though that is apparently where most of the money in
computing is made these days. It may very well be a wise decision. The oldest longest-extant small com-

pany is the Italian arms company
Baretta founded in 1526, that is, nearly
five hundred years ago. Violence never
goes out of fashion.

Serving other businesses with technology and expertise to make their
own business succeed is a more robust long-term business than a
business that is steeped in extracting profit through monetization
of customers by advertising and invading their privacy. The latter
is primed for missteps and supplanting. Free access to invade pri-
vacy and to create automated profiles through artificial intelligence
is also a seed for failure if people walk away and one is left with a
very expensive infrastructure to support. IBM has faced this often,
when computing approaches change, and old legacy systems need
to be continued to be supported because they are central to the busi-
ness. This is often the reason for the need for renewal. If is easier for
business-to-business processes. Advertising companies come and go.

The message from this experience is that dynamics and open
boundaries are pervasive through all human endeavor, as individ-
uals and as an enterprise. Vibrancy comes, success comes, and is
reinforced through conservation of flow, of flow of bright young
people streaming in, new ideas growing and uprooting old dogma,
opening and exploration of new territories, and that the lessons of
the two marshmallows principle must be constantly remembered.

The world changes around us, we must change, interesting prob-
lems move outwards under a strong entropic force, and so must
individuals, companies and countries.

6.3 India in sepia and in the world

I offer here a narrow information-based view of India now—my own
reading of it and its evolution within the world seventy five years
after independence. This is now several generations following the
freedom. People are better off than in my times when decisions were

Personally, in this extended period of
living in India following long periods
of absence, it is quite evident that this
is a very different country from the one
nearly five decades ago when I left. It
has enormous self belief, it does not
think anymore in reverence of white
sahibs and brown sahibs even if VIP
culture is still persistent, it does not
look at western publications such as
Financial Times or Wall Street Journal
or The Economist or institutions such
as the the World Bank or International
Monetary Fund as the fountain for
wise prescriptions having realized
that they are all self centered. India
stands for its own interests as it sees
fit in the world context and through
its own experiences of post-freedom
period. This is very different from my
times till 1976. There is no submissive
non alignment but an assertive non
alignment.

so often based on how to eke a living. There is more self and passion
today.

But nothing is vertiginous. Progress happens through confluence
of a flow where nothing is a bottleneck and the entirety is limited
by the slowest part of those inputs that constrain. This could be due
to skills, or due to lack of capital, or due to poor communication or
transit infrastructure, or due to the time-scale of processes, and so
many other factors. It all depends on the particular technology-based
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social uplifting task at hand.
Growing and rising is a task replete with challenges, and it is

in this midst that one must view the question of semiconductors.
Development and growth is a flow that is across the entire chain.
People, ideas, development, products, social structure, transit, inter-
country relationships for trade, time, et cetera all matter.

I offer the following informational view.

Figure 6.3: Wealth and taxation and
representative issues of education
today. I have added to it an idealized
projection of how the wealth across the
populace needs to be in a developed
nation which is not an unfair idealized
goal a century after freedom.

Today’s India (Figure 6.3) has 40% of the wealth in the top 1% and
63% of the wealth is with the top 10%. 40% of the wealth that was
created in the last decade went to the top 1% and only 3% went to
the bottom 50%. It is the bottom 50% that pays 64% of the goods and
services tax, which covers everything involving daily necessities. This
is very incongruent. It is a system that is making the money flow to

Measures for of incongruency are,
of course, non trivial. But a ratio of
top earning to median earning and
top to the lowest earning within any
grouping—a company or a nation
or other subsystem—is not a bad
start. Science tells us that a factor
of few Euler’s constants is a sign of
nonlinearity and not normal. This is the
fallibility and fungibility of humans.
We may be able to tackle clean water,
enough food, decent medical care, but
then take on the harder things, love,
safety, aspirations, natural kingdom,
and that bar always seems to be so
high.

the rich rather than the larger populace.
For population at large, education is the major tool for improve-

ment and for getting out of their low-income circumstances. But,
the education system is such that a large number of young do not
make it past the primary school for reasons of cost, interest, poverty,
quality of schooling, and others. A skilled workforce requires col-
lege education, whether academic or vocational. Yet only ∼ 30% of
college-age Indians are in college. This does not account for what
the colleges are teaching, and the quality of that education. If one
wants an educated India where everyone has a chance to be creative
and productive and satisfied, this spread must compress, and it must
compress in a generation.

Figure 6.4: Female literacy by income
group and changes over a decade.

One can also assess the proposition that all-are-created-equal in
democracy through what is happening to females, who are usually
the ones left behind in societies, most societies being male dom-
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inated. The poverty- and access-driven paucity is reflected in the
share of literacy (Figure 6.4) . The poorest have only 1/3rd of female
literacy. This is not equality of access, or democracy at work, or a
nation that is putting sufficient effort to the most important factor—
education—in a community’s growth.

Figure 6.5: Maternal mortality in select
countries of the world.

Another good measure, besides education, for people-oriented
governance is healthcare, and a representative measure is maternal
mortality (Figure 6.5) which is a gauge of caring for mothers as well
as caring for the new born. India is factors of ten or more worse than
developed countries, particularly European countries, which tend to
be more people centric. Not on this chart, but even a poor country
such as Costa Rica has one-fourth of the maternal mortality of India.
China, about as large, has a mortality of 1/5th of India.

So, to understand the broader outline of India’s development
dynamics, the underlying statistical measures of how money is spent,
I chose to build a cohort group that was at about the same state of
development at the time of India’s freedom. A viewing of this also
gives a few example instances of what may happen given the if-
then type questions, as well as one that is fascinating. What does
one do and what the characteristics are that cause growth to happen
but then stagnate before one is on equal footing with the developed
nations. This is the income trap, which can be at low income or even
mid income, and one that the emphasis and the nature of the country
and its interactions in the world are likely to determine.

Figure 6.6: A comparison of
GDP/capita for Türkiye, South Ko-
rea and China with India over a major
period following India’s independence
to modern times. Source is countrye-
conomy.com.

The cohort group (Figure 6.6) is Türkiye, a country that Ataturk
democratized following the fall of the Ottomon empire, China, which
was under quite strict Communist governance following Mao Ze-
dong’s overthrow of the Kuomintang, and South Korea, which ap-
peared as a nation following the Korean war, and was often under
military dictatorship for a few decades.

A number of observations can be made, a few of them I find par-
ticularly interesting and remarkable. The cohort groups all show two
points where rapid change occurs. There is an initial rise, this is fol-
lowed by a plateauing, and then another rise takes place. There are
two inflection points. India seems to have had its first, but not yet its
second. So, an interesting change to look for ii about now and should
be observable in a few years. With the deglobalization efforts under-
way in USA, the slow ending of dollar at the center of all finance, and
the rise of a multipolar world, the prognosis is one of good chance.

South Korea has continued to grow getting to nearly half of Eu-
ropean standards, with the changes taking off in 1980. This is the
time when its steel industry and ship building became competitive
with that of Japan. Soon after, in the next decade, it embarked on its
semiconductor—primarily through memories—mission. Gradually
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the other areas: chemicals, materials, telecommunications, and now
biology have become ascendant. This is the second inflection of South
Korea. For China, the first changes were once Mao’s cultural revo-
lution ended, the change was slow like India’s early decades. With
Nixon’s opening up to China as a counterfoil to Soviet Union, Deng
Xiaoping’s ascendancy, and the focus on becoming the manufacturer
to the world—starting with the Shenzen experiment—came the first
clear inflection. The next inflection is around 2008 when the western
world was trapped in a financial crisis brought about by the capitalist
easy money and boom-and-bust, not dissimilar to what is playing
out right now, while China started graduating from manufacturing
to higher-value creation by corporations that designed and built their
own and started competing with the Western cohorts on equal foot-
ing. China keeps moving on and there are many lessons in this that
we must explore since India’s trajectory looks so far as one that is
twenty years behind China’s.

Türkiye took off in the 70’s, and again has a double inflection
around the 2005 time frame. So far, for these examples, one sees
noticeable change taking place for all these countries around 2005.
This is most likely globalization and USA’s use of lower labor coun-
tries for low-end manufacturing, from plastics to small appliances to
clothing, with different categories important for different countries.
South Korea and China however have kept growing by bootstrapping
to higher value industry. Türkiye does not seem to have. This is a
low/middle income trap, where now for nearly a decade-and-a-half
there has been bouncing around and flattening. Türkiye now also has
significant inflation.

This raises an important question of what causes countries to fall
in an income trap, where after reaching a level of income, the growth
stops. What makes or breaks growth of countries. Any country wish-
ing to be advanced with its entire population enjoying a comfortable
humane life needs to avoid the trap by understanding its causes.

6.4 Leitmotifs, self incarceration and the income trap

In science there is an important concept enshrined in the phrases
short-and-long, fast-and-slow, and heat-and-work that speak to the flow in
the midst of complexity. The concept holds for many dimensions. Its
behavior is most immediately visible in time. Short, or fast, is like nit-
picking or scattering, where lots of little events here and there cause
unpredictable outcomes and hinder movement and flow. Like walk-
ing in crowds versus an early-morning or late-night walk without
the crowds. The short avoidance/bouncing events are fast events, are
frictional, and they slow one down. It is heat that takes away from
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the ability to do useful work. Actions have consequences. Causes
have effect. Sometimes we react. Sometimes we act. Sometimes we
are impulsive. Sometimes we are deliberate. Fast and slow is a Kah-
nemann phrase. Gut actions are a system 1 quick action based on
past experiences. They are programmed in. Slow is deliberative,
where we think through, work through stories from which we learn,
and then act. They are analytic. Short is an immediate effect. Long
is an effect that plays out in time. What looks right in short can be
terrible long term. Scattering is a fast short phenomena. In walk-
ing through crowds with a lot of fast scattering, there is much heat
and very little productive work in the long term. Sometimes short,
fast and heat are useful too. For example, if one is walking, trying
to cross the road, and suddenly a red car comes roaring down, one
must quickly step back. There is no thinking required, no working
through what if questions. These are all examples of various connec-
tions between short or fast events and long and slow effects. Long
effects linger. Drop a stone in the pond, a quick event, and that wave
spreads out for a very long time and has an effect that can be felt far
far away.

The income traps are such a long term effect. Looking at the
world, in European region, which by and large are well-off nations,
one can see a number of countries, Türkiye that we are discussing,
but also Greece and Italy that are stagnant. Each of these three coun-
tries has tourism as a major industry. Tourism is a service industry,
it provides an employment that is at best low and middle income for
most of the participants except the hotel owner or the tour operator
owner. On top of this Türkiye is in the midst of secular-religious cul-
tural fights and a lower key conflict with Kurds. Greece has constant
right-left debates, changes of the government every so often, and has
still not outgrown the angst left over from the second war, the civil
war, and the military dictatorship that followed. Italy seems to have
similar leftovers of fascism and tourism is now broadened to gas-
tronationalism, with the latter contributing nearly half of the GDP of
nation.

Eric Hobswam says that `̀ When a community finds itself deprived
of its sense of identity, because of whatever historical shock or frac-
ture with its past, it invents traditions to act as founding myths.´́
The Italians have invented there’s, the English too have their corona-
tions, royal soap operas, the Northern Ireland union centered sagas,
the Turkish folks have the Armenian genocide, Kurds nation, and
Islamic-secular kerfuffles. These are all sources of friction, the short,
and all they do is cause heat with nothing productive at the end.
They become the alter ego of the income trap.

Figure 6.7: UK and India comparison of
GDP. Source is countryeconomy.com.

To the test the thesis of living in the past and fabrication of iden-
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tities, UK provides a good test opportunity. Sure enough, it has been
in a middle income trap (Figure 6.7). Like Türkiye for the past two
decades. UK has not been able to shake off the loss of the empire
and outgrowing its easy looting of the wealth of other people. Man-
ufacturing is not appreciated and has mostly disappeared except for
some remnants in Rolls Royce airplane engines. The class, feudal,
and financial chicanery that helped it rule and impoverish giant na-
tions are now its own problems whose most ill effect has been Brexit,
an issue that is a constant—a short— irritant everyday in the society.
It is trapped in its own jail of beliefs and deprived by its faux empire
identity. This constant fluctuation witnessed in politics, Brexit, med-
dling in other nations, London as the sole focus because of its finance
as a background in the daily life is very unproductive. It is these self
incarcerations that have left these countries not striving to rise but to
just duke it out within constantly.

There is a lesson in this for India. Amartya Sen lauds the constant
Indian discussing and debating rather than doing things by calling
the people as the argumentative Indian. Practiced within limits, the
debating and rational civilized fighting is productive and leads to
proper course corrections. Unrestrained, it is just producing heat, and
doing everything useful inefficient through that friction. It slows one
down and it also slows others down.

For progress, the simple normal things that one needs to live
should be free of friction and taken for granted so that the energy

I should add here some current Indian
context from my experiences. I have
benefited tremendously through others
who have helped me wade through
bureaucracy of the financial systems.
The systems have undergone tremen-
dous improvement with robust safety
measures, less corruption, and is now
straightforward for those with smart
phones. As a visitor, I have had to rely
on others after struggling on my own
for a few days. You need local credit
cards, local bank accounts, local phone
access to manage. It makes sense for
daily living and honest governance. But
I find phones slow me by interfering in
my own attempts at productive work.
I am also a privacy fanatic and protect
myself from Googles and Apples. So,
perhaps it is my own self-built trap.
But, where I stay on the campus, just
across the institute wall are are two
temples that sometimes blast all night
long, and regularly attempt to indoc-
trinate in evening and early morning. I
can not figure out how children can get
good sleep and be prepared to learn the
next morning, or how can the parents
be at their best at work. Religion should
be a personal belief, not a source of irri-
tation to others. This is short and long,
friction, and inefficiency in India the
same way as it is in Türkiye or Northen
Ireland or Israel. Not solved, it is going
to lead to a trap.

is placed in useful work that is needed past the daily civil human
existence.

This is my lesson from Eric Hobswam and a look at the statistics
of nations. The trap is is largely tied to cultural factors. There are
events and traditions that one cannot get over since they have been
so ingrained since they are part of inculcation in family, in schooling
and by religion. All the people involved in past injustices may be
long gone, but injustice still live today and in turn keeps continuing
the tradition of doing injustice. This is the invention of traditions
and creation myths and they become leitmotifs. It is representative of
failures rather than success.

As an example, in Indian context, while it is true that as recently
as 1700, India accounted for about 24% percent of global GDP, not
different from what what USA’s is or Europe’s is or China’s is today,
while India’s is only 3%, let one not forget that the governance was
in decay. In the north part of India, there was steadily increasing
extraction from the populace by Delhi, Akbar and others included,
in the midst of insularity, excessive religion, poor education and
modernization, while Europe was undergoing the science and art
renaissance. The perpetuation of power and glory meant creation of
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zamindars, the impoverishment of the landless, while Delhi hid itself
in music and poetry, whose eventual culmination was the British, the
opium trade, the indenturing—a euphemism for slavery, emigration,
and all that Bankimchandra and Sharatchandra and Premchand so
eloquently talk about. This is the reality of flow. And of course one
can trace this farther and farther back of which unfortunately less
and less is likely to be what was real.

Myth building helps avoid really facing information, so one
should look at some of the statistics to understand what the bot-
tlenecks in growth can be.

Türkiye South Korea China India
Annual GDP ($M) 817,508 1,797,810 17,744,640 3,176,296

GDP/Capita 9,654 34,744 12,564 2,257

Debt/GDP (%) 41.8 51.33 68.06 89.18

Debt/Capita 4,036 17,968 7,164 1,704

Deficit/GDP (%) −3.86 −0.02 −9.72 12.76
Expenditure 3012 9046 3726 588.5
/Capita ($)
Export/GDP (%) 26.15 35.61 18.97 12.46

Education 395 1487 347 56
/Capita (%)
Education 12.41 24.98 11.45 12.75

/Budget (%)
Health/Capita ($) 291 1214 337.9 19.9
Health/Budget (%) 9.69 13.42 9.07 3.38

Density 108 515 147 428

Life expectancy 75.85 83.5 78.08 70.15

Population 84,680,273 51,736,000 1,412,360,000 1,407,563,842

Table 6.1: Financial comparisons, im-
portant ones normalized, in some
important categories for cohort compar-
ison. The numbers are either from 2021

or 2022, and the sources are countrye-
conomy.com and www.statista.com

Returning to India, and its policies, the potential-of-trap issue, and
of flow with respect to the cohort, and United Kingdom, issues that
have been highlighted, Table 6.1 provides some of the important fi-
nancial statistics of the four countries that are being compared. For
India, with a GDP/capita factors of 4 or more smaller than the other
comparisons, it is not surprising that similar ratios hold for expen-
ditures, that is, funds going to infrastructure, railways or defense, or
interest payments, but, the ones connected to the two items I called
out as central to the trap arising in the flow and well being are educa-
tion $ per capita and health budget $ per capita. These are even more
than the reduced factors of other categories. These are factors of 10

worse for health per person and it is not surprising that education
and health outcomes are abysmal, and it is quite a stretch to imag-
ine that a vibrancy comparable to even the poorest of Europe can be
achieved in a decade and a half—of the order of a generation—for
the country. Furthermore, it also implies the flattening following a
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spurt unless this is rapidly corrected.
Compared to the cohort, a more suitable place to draw lessons

and emphasize the relationship between emphasis and outcomes,
is to compare to China. It is a big country and till the 70s, the com-
parison between China and India was similar for most categories of
development. China today has established itself as a leading techno-
logical nation bootstrapping beyond its origins of change in the lower
value manufacturing. The technological change could not have been
possible without the simultaneous development of the entire flow
system.

Figure 6.8: China and India comparison
of the sources of gross domestic and
value products. GVA (gross value
added) adjusts the GDP (gross domestic
product) and also shows the impact of
subsidies and taxes on products.

China’s wealth is far more from industry, trade and finance (Fig-
ure 6.8). India’s is broadly across a number of efforts. Manufacturing,
the highest value undertaking in terms of a real product of real hu-
man enterprise, is 1/3rd for China, but only 1/7th for India. For
India, finance, services, and real estate is 1/5th and agriculture is just
a little less. Real estate building and agriculture are low pay poverty
employment, and that is where much of the employment of the na-
tion, that of the bottom half is with which the sepia tale started with.
Of course, wealth generation and the flow towards higher income is
weaker since India’s emphasis is still at the low end of the monetary
contribution chain. The education deprivation keeps this flow highly
constrained and will continue to do so as a Catch 22.

China is also instructive when one compares it to USA to probe its
success and its the ability to keep the flow intact (Figure 6.9). China
exports more than 3-times more than it imports from USA. Nearly
half of these exports are machinery ranging from electrical, tools,
construction, to other higher-end factory floor machinery. Only about
a quarter of imports from USA to China are machinery. USA’s other
major items are agriculture—a low value added product—and ma-
terials such as oils to cement. China exports items that bring more
profit and higher wealth to the nation. So many of USA’s exports are
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Figure 6.9: China and India comparison
of the sources of gross domestic and
value products. GVA (gross value
added) adjusts the GDP (gross domestic
product) and also shows the impact of
subsidies and taxes on products.

in categories that are commonly to be found in exports from emerg-
ing countries, with agriculture and minerals and other resources
from land dominant. Transportation—aircrafts being one of the major
categories of export for USA—is less than 10%. The physical work
occupations and products dominate.

Figure 6.10: Export control cate-
gories from USA to China. Source:
www.bis.doc.govindex.phpcountry-
papers2971-2021-statistical-analysis-of-
u-s-trade-with-chinafile .

One can perceive in these statistics the reason for tremendous
worries in USA of it being supplanted by China. So what can USA
do? Its actions over the past few years is to increasingly throttle the
high-end export (Figure 6.10) where all the wealth comes from. This
is aircraft engines, sensors, transducers, some chemicals, lasers, some
telecommunication, nearly all the different things related to informa-
tion and how efficiently can people move to do things, so aircrafts.
There is a broad set of categories, nearly all related to higher-value
technology products and their manufacturing, and of nuclear indus-
try.

Figure 6.11: TSMC revenue
over its lifetime. data from
https://companiesmarketcap.comtsmcrevenue
.

Taiwan of course finds itself in the middle of this historic fight.
The foundation of information technology in all its physical implementation—
semiconductors—is at the center of this tension. TSMC is the world’s
global foundry (Figure 6.11). 1/3rd of world’s silicon chips, designed
by others, come from it. This includes for nearly all of the products
from Apple, particularly its mainstays of iPhone and the Macs. It
has 13 foundries. From its formation in 1987—many of my IBM col-
leagues in silicon technology efforts went back to participate and to
start other companies that feed or feed from semiconductor manu-
facturing and have had a satisfying life—it has grown to the current
dominance. It has 65,000 employees, so it is a high value $1M per
employee output. All this started from a humble beginning by an
enterprising Morris Chang leaving Texas Instruments, one of the
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semiconductor integrated circuit inventor company. Texas Instru-
ments still exists with $21B per year output. Intel, for comparison
here is $62B revenue.

The formation of foundries was a brilliant idea, not as much ap-
preciated as it should be, for breaking open semiconductor tech-
nology access to clever circuits and hardware designers who could
now build and forge their own directions unconstrained by the large
companies. This was the blossoming that led to rapid progress in
communications, such as of the incredibly powerful modern mo-
bile phone, as well as in computing, where new architectures and
new approaches could be started and implemented. Qualcomm is
a supremely successful example of the former and Nvidia of the
latter. Qualcomm had $42B and Nvidia $27B in revenue in recent
year. Neither builds any semiconductors, but all the cellphones and
all the internet search infrastructure, and supercomputing, video,
and other infrastructure all rely on the work from these companies.
The foundry manufacturing made it possible. Only Samsung as
a foundry appears as a competitor to TSMC. It too is next door to
China. The semiconductor technology has become so complex that
Intel is now generations behind and USA.

6.5 Dirigisme, walled gardens, and commanding the high end

China with its 1B users and $6.6T digital economy—much larger
than USA’s—is also where much of TSMC output goes, since all the
large-and-small hardware builders use China as their integration and
assembly source. This includes Qualcomm and Nvidia. For USA, this
makes China the bogey man. The Chips Act initiative makes $280B
of funds available in an attempt to rejuvenate the semiconductor
industry in USA with strings attached to minimize exploitation of
the funds, which is the norm all the world over when a pot of money
becomes available.

For any government policy in an industry that has been science-
and technology-based ideas driven, and capitalism as a freedom
driven system, this is an enormously powerful instance of dirigisme.

Dirigisme is a directive role by the
state. In capitalism, the state usually
only plays a regulatory role. Many
economies—Japan, India, UK, Euro-
pean union, China, nearly all emerging
countries—have been practitioners of
dirigisme. It can work in social bal-
ancing objectives, but in technology,
where ideas are the most important
element and dynamic changes are con-
stant, the success possibilities reduce
substantially at the higher value end by
state interference. New technologies are
invented by competitors, choices can
be wrong, support means picking one
over the other, and this in turn reduces
competitiveness. As the semiconductor
industrial knowledge became more
pervasive, even as IBM shed many of
its factory efforts, its reliance on New
York state support, New York being
interested in maintaining employment,
became an albatross. Decisions that
should have been made, and clever
new options followed, were differed. It
makes the pain far more intense when
the finality arrives. IBM inventions in
spun-off environments would have
been major businesses in their own
right. Thermo Electron Corporation
and other companies have shown how
spun-off enterprises can flourish and
yet help the original organization.

Dirigisme has many different faces. China has always practiced
it. And now USA is recognizing it. But, evidence of its existence in
the West, and specially in the USA-China supremacy contest has
been around for quite some time. The Huawei episode in Canada,
where Canada arrested the Huawei official at USA’s behest, and later
Huawei’s banning from so many countries is dirigisme in practice in
the various forms.

In science and engineering, one can make best guesses based on
current knowledge, but in the end, it is only the result that tells one
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if what one pursued was good thinking or bad thinking. This is what
Bertolt Brecht was telling us in asking us not to be too confident in
science. That science can reduce possibilities of errors, but that it can-
not eliminate them. The memory of a period in 1980s, when IBM was
still doing remarkably well, is still intense with me. Everybody, in-
cluding IBM, were very scared of Japan’s 5th generation project. This
was an effort of massive proportions—Fujitsu, NEC, NTT, Toshiba,
etc. —and the state working together to make the most powerful su-
percomputers that will eliminate the status quo. Fujitsu in particular
was a worthy competitor to IBM. In the project, lots of very special
purpose chips were designed, and so on. Meanwhile, out came UNIX
from Dennis Ritchie and Ken Thompson at Bell Laboratories work-
ing on DEC computers, VLIW practiced on specialty microprocessors
from IBM, and the distributed and massively parallel systems era
started. It was not long before one could even assemble a supercom-
puter in the basement of one’s house should one so desire and had
the knowledge. All the prominent Japanese computers are now gone
out of computing as such. Dirigisme failed. But dirigisme certainly
has succeeded for China. Dirigisme also helps bootstrap in known
technologies that are still useful. It is in the highest end, where the
idea itself is dictated by the policy where it is subject to causing a
catastrophe.

A lead in technology, therefore that a strength in the highest value
efforts that build a nation’s wealth, along with other power dynam-
ics, underly these USA-China internecine conflicts.

The US emphasis on TSMC, Taiwan and the Chips Act, Huawei
and others, all the export controls over semiconductor manufactur-
ing and design tools, the potential ban on Tiktok, et cetera, are all
examples of the important role that semconductors have in the most
important technology of these times. Global power of course is an-
other.

Why semiconductors and where exactly is the wealth from semi-
conductors so that one understands what that entails in pursuit of
higher value and growth of a nation?

At the simplest level, of course the wealth is in the higher end.
TSMC may be a $75B dollar company, but it makes many other com-
panies of the same size possible through the design and hardware
chain built on top of the technology. This answer is fallacious in that
it is the country of the higher value product that is gaining. Taiwan,
in some ways, is in this trap and at the center of a rivalry, where
what it has is central to the well being of others. This tension, of
course, is also its safety valve. It becomes a country worth defending and
protecting.

The lesson here is that the highest value comes from building and
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then controlling a fenced garden of some essential or addictive human
need.

IBM did that in the past with mainframes. When that world be-
came only a small part of the human landscape of information usage,
others adeptly stepped in. Apple now is a master of a garden with its
iPhone and the iOS, and with the laptops, et cetera, and the macOS.
Google is a master of its fenced garden with Android for phones
made by many manufacturers, and of Chrome, and of the Cloud in-
frastructure it has built by providing free access to it to the masses.
Microsoft, starting with Windows, going through a weak period, now
does the same with Azure and Cloud that forcibly pull people into its
walled garden. Facebook used its social network skills to rope people
to its universe. Looks free, is useful, what is there not to like? What-
sApp works free. Apples and Googles can extract 30% for allowing
every loaded software into their garden, and then extract a cut on
every transaction conducted through it. Facebooks, Apples, Googles
can bombard you with advertising exploiting your psychological pro-
file learned by spying on your transactions and your `̀ free storage.´́
Amazon can do the same in its selling, and since it knows what sells
for all the sellers on its website, it can even undercut and put the
small merchant ouf of business by creating its own equivalents. This
is the top of the value chain.

Top of the value chain is very profitable, but also filled with seri-
ous moral, ethical, and social hazards. Dirigisme has a very proper
place for tackling the latter as India’s electronic transactions edifice
has been by protecting the meager profits of kirana shops from disap-
pearing into the companies at the top of this food chain.

Amazon $514B/yr Alibaba $135B/yr
Apple $388B/yr Huawei $110B/yr
Google $283B/yr Baidu $20B/yr
Tesla $82B/yr BYD $52B/yr
Meta/FB $117B/yr ByteDance(TTok) $58B/yr

Tencent(WeChat) $81B/yr
Twitter $4.4B/yr 328M Sina(Weibo) $2.1B.yr 340M

users users
Nvidia $27B.yr H100 Biren Tech B100

$27B.yr 7.7× 1010 7.7× 1010

trx trx
7 nm 7 nm

Table 6.2: Major USA and China
information-based company com-
parison.

An interesting view of the USA-China, the former has a GDP of
$23T with 330M people, the latter of $18T with 1.4B people, can be
seen in some of the important information-centric companies com-
parison of Table 6.2. For each of the dominant company in one of the
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technology-utilizing area, there is at least one competitive company
based in China. Some USA-based companies are significantly large,
but the Chinese companies are starting to bite at the toe, and the USA
environment monopolist, while China’s is not, so also an interesting
dynamic. This is one piece of the technology-underlying tension.

The second is in the controlling, that is, the walled-garden part.
In this advanced technology-value-control dynamics, the current
situation in a few different domains is

• Large cloud providers: Amazon, Google, Microsoft, Alibaba
Cloud,

• Dominant desktop OS providers: Microsoft, Apple and various
Linux,

• Dominant mobile OS providers: Google and Apple,

• Chip companies: TSMC, Samsung, Intel, Global Foundries,

• Design companies: Nvidia, Broadcom, Qualcomm,

• Electronic design automation software: Cadence, Synopsis, Mentor
Graphics, Avant!,

• Social networks: Meta, Whatsapp, Snap, TikTok, WeChat,

• Car companies: Tesla, Hyundai, Toyota, VW, Mercedes, BMW, BYD,
Gili, et cetera,

• Airplanes: Boeing, Airbus, Comac C919, and

• Networking hardware: Nokia, Ericsson, Huawei, Cisco.

The bold lettering is for Chinese companies, and the italics are non-
USA companies. Certainly USA still controls through the standards a
fair domain, but China is starting to attack the top of this value chain,
aircrafts included, and for control, as all this recent Tiktok fuss, or the
Huawei fuss has been about. China, a communist country, has more
internal technological competition than USA, which is dominated
by monopolies. It is building dominance in electric vehicles. Huawei
and SMIC created one of the most advanced semiconductor technol-
ogy node process that even Intel is still trying to master to overcome
the USA sanctions. Germans better beware in the automobile indus-
try.

Hard work and speed can overcome
much adversity. Many countries find
this out in wars. Economic war is
another one of similar wars where a
nation’s place in space and time is at
stake.

Figure 6.12: The revenue of major
Chinese technology-centric commerce
and hardware companies in billions of
Yuan. Source: www.statista.com.

Figure 6.12 shows in billion Yuans, the market valuations of the
major technology-centric commerce and hardware companies of
China. There are many more information-exploiting companies in
China. Competition is alive in a Communist nation. Controlling a
market gives large money monopoly. For example, Amazon, Google,
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Facebook, Snapchat, Pintrest, just five companies, had $380 billion
in advertising revenue in 2022. This is one aspect of Capitalism that
does seem to stand in contradiction with the belief of free enterprise.
It is a notion that we will revisit since it is one that dirigisme can
address.

Nevertheless, collectively portrayed in this description is a trend
that there are very serious changes afoot and that the world is now
at a major turning point in the post-WWII order. For every USA
company, there exists at least one, if not more, Chinese companies
that can compete. They can extract high value and not leave it with
the merchants that some of the organizations in this collective are.
Much of the value in information infrastructure draws on system
dominance, hardware dominance, and access to semiconductors as
Figure 6.13 shows for shareholder return . The top 7 sectors draw
their return by building on semiconductors.

Figure 6.13: Returns of the
semiconductors-dominated and -
based information structure. Source:
www.ft.comcontent939e819e-8381-4fee-
8639-439847a196b3.

This collective has lessons for India. When and if semiconductors
come to India, India will have to do this to exploit its semiconductor
advantage and to protect itself from dirigisme of others.

We viewed TSMC as the $75B revenue company. Figure 6.14

shows the revenue changes over the years of semiconductor com-
panies of the world, with the list including some who design but
get their hardware built. The contributions of semiconductor manu-
facturers and designers keeps rising. I would suspect that with the
difficulty of the practicing of the technology so large, this trend will
not change, and barring world calamities, Samsung, TSMC, ST Micro,
and others are well placed.

Figure 6.14: Market revenues of semi-
conductors and semiconductor design-
ing companies of the world. Source:
www.statista.com

India can join this list, but I am going to argue that it should not
join them as just a manufacturer in the TSMC sense, but as an ecosys-
tem, meaning one that has other higher value wrappings around the
semiconductor.

6.6 Free at last: Design and open software

Dirigisme is a help as one is climbing a value chain and building
accepted and immutable technologies. It does not work once one is at
the high end and needs to break one’s own path. There are a number
of issues buried in this and let me discuss my view through example
discussions.

Consider the first level up from semiconductor manufacturing.
The design of the circuits that form a subsystem of a hardware. This
involves tools of design, testing, verification, et cetera, but more im-
portantly complex design where timing, heat, energy, power, noise,
robustness, speed, compatibility, fitting into other people’s designs of
something else of which the design may be a part, and so on, all mat-
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ter. Design is not a trivial undertaking. Lot of software, lot of intense
knowledge and experience comes to bear when one needs to provide
robustness, security, speed, low energy, and all the other design con-
straints. It is accumulated experience and it needs good team work.
It is also pervasively needed. No semiconductor is useful without a
good working design, be it in the cloud, or the edge of the network,
or in your hand. This is where quite a bit of money is made sitting
and designing and testing to get things right, with TSMC or Samsung
making it for you.

It happens in two ways. One is where one is designing special-
purpose systems, where the design is very integrative and much
more specific to the task. The second is where one can share designs
because of the commonality of the tasks being performed.

AI/ML-oriented designs fall in the first bracket. NVidia appeared
as a graphical processors maker of the early video processing engines
so that young people could play their games of blood and gory and
glory. Pretty soon, it was realized that this streaming way is also very
useful in fast high end computing such as those needed in supercom-
puters for nuclear, or biological, or other such problems. CUDA as a
way of programming was born. Cryptocurrency mining—an incredi-
ble fooling of our society similar to the other addictions—helped. The
processors started becoming mainstream. Nvidia kept improving and
these are the processors employed in AI/ML tasks. NVidia is far far
more valued than Intel.

Figure 6.15: A comparison of BR100
versus the previous generation Nvidia
highest-end processor used in AI/ML
tasks. Source: HotChips’22.

But, here too, with good effort, one can supplant. Nvidia’s com-
petitor in China is nearly as good. Biren Technology is a company
founded in Shenzen in 2019, does fabless design for AI and high
performance computing. Its highest end processor design is BR100,
made in 7 nm using 7.7× 1010 transistors. All of these employ large
amount of fast static random access memories (many 100s of MB),
and flow architectures for speed with large bandwidths within the
chip and to the chip. The total assemblage dissipates 550 W. It is just
as powerful as the latest Nvidia highest performing chip. If Biren can
keep getting its chips, China will do fine despite Nvidia not being
allowed to sell H100 to China under the new export controls.

I also remember a particular IBM
angst during days of competition with
DEC/Digital. IBM’s technology was
3 generations ahead, but DEC/Digital
performance was equivalent through
cleverer design. They employed dy-
namic circuits. IBM used old static
approaches with re liance on transistor
shrinkage rather than also iterating
design.

Never underestimate human ingenuity and ability to cleverly improve.
Indeed in design and technology, it is when one is under the severest
of constraints and stress that one produces the best designs. When
life is easy, and one can depend on just working on improving one
aspect of the design—for a long time, it was just the size, later node,
of the transistor, with transistor improving every generation—one
inevitably produces poor designs of a complex system with many
properties interacting.

Figure 6.16: ARM-licensed shipments in
recent time.

The second design approach’s example is reuse and employment
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of standards across many companies. For not-so-high-end, these
ideas too can flourish despite the walled-in gardens created by so
many companies. Mostly, these are low-end or medium-end designs
being used in large numbers in all the electronic automation one
sees all around. ARM (Figure 6.16) is pervasive right now. Nearly
70% of the world non-memory semiconductor designs are based on
ARM currently, nearly 80 B designs per year. Most of these go to
China. ARM is used from cloud to edge, with CPUs in the middle.
All the Macs, iPhones, the Chrome machines, et cetera, are ARM-
based designs from Apple and Google. Google’s cloud too uses a lot
of ARM-based designs from Google.

Figure 6.17: RISC-V-based design
spectrum for different applications.

The change and opportunity is in RISC-V (Figure 6.17), which
is a new open instruction set architecture accessible to all with no
giridisme interference. Plenty of designs are already available on
Github. About a third of current chip projects in application-specific
and field-programmable, processors, controllers, et cetera, employ at
least some RISV-V. Europe is strongly with RISC-V designs. There
are plenty of non-high-end designs that happen in Europe. This is a
slow-and-steady replacement of ARM. When I was at ETH, the entire
floor of the large building where I sat was occupied by Prof. Benini’s
students and post-doctoral fellows—must have been at least 50—
deep in the task of RISC-V designs. He is not alone as China seems
to have adopted RISC-V to free itself of controls. 10 B chips, half of
them from China, a volume that is about 1/5th of ARM’s was RISC-V
based in the past year. Chinese academy of sciences is on a 6 mo cycle
of upgrading designs. Among the major design firms are Starfive
and SiFive that make a variety of CPUs (from low end to high end),
Alibaba—like Google—making its own custom built processors, even
porting operating systems such as Android on to it, Ali Pingtou,
another Alibaba offshoot that makes processors with high end, multi-
core, multi-cluster, cloud and AI objectives, Baidu, and of course
Huawei. This is an army of bright people behind RISC-V.

Just as UNIX changed computing through its openness giving
world-wide freedom to clever people, or foundries gave world-wide
freedom to chip production, RISC-V is giving freedom to combine
chip design, chip production and software freedom through the
merging of all these trends in one product. ARM is formally owned
by Softbank, but it is a very complicated ownership with China’s
ARM part also in charge. Softbank wishes to make ARM a public
company, but there are these ownership issues involving Japan, UK,
USA and China in the background, all at a time when ARM is also
losing to a new competitor. The flattening of ARM’s output is quite
telling.

The writing is on the wall for RISC-V designs to keep improving
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and becoming the main computing-structures design in the next
few years as it continues to progress and more and more people join
implementing their own designs. ARM has lost this race.

I hope that I have convinced you of this thesis of dirigisme—
exercised with caution—as an operating principle in the new world.

USA-China is but one example. Any competition—an inevitable
outcome of a nation trying to raise itself to higher echelons—will
face it. It is a north-south, west-east, past colonizers-colonies, first
world-third world strife for getting an upper hand whose major
catalyzing reason is economic. A recent example is of South Korea

I have stayed away from the defense
aspect of dirigisme. I don’t know
enough. These are all secrets of the
dark halls that mortals cannot observe.

and Japan. South Korea, for example, has done well by focusing on
semiconductors. Japan-South Korea have historically been frenemies

Samsung and Hynix are the major
semiconductor entities in South Korea.
Both are world’s memory source (with
China and USA following), the former
is also a foundry—like TSMC with
similar high-end capability in nodes,
with IBM as a major customer, but in
addition, there is DB Hitek, that is in
high voltage, analog-digital, as well
as SOI products and other specialist
technology, a bit like On semiconduc-
tors. The Covid period taught us that
even simpler semiconductors—of past
generations—are just as vital. Auto-
motive semiconductor demand could
not be met. Much of it depended on
products from world over, including
China, and in other semiconductors and
specialty tasks.

due to the deep-seated angst from World War II and has had its own

Wars, even if short—few years—events,
leave behind a long wave of reper-
cussions. Long and short too takes
place as in between occupiers and
occupied. Japan placed restrictions
on specialty materials, coatings such
as polyimides and specialty gases
such as hydrogen fluoride that are
essential to patterning and growth of
silicon structures from being exported
to South Korea in 2019. It is not
clear at all what the cause is ( see
www.wto.orgenglishtratop_edispu_e/cases_eds590_e.htm),
but competition must factor
in. The result a few years later (see
asia.nikkei.comBusinessTechSemiconductors-
Japan-export-curbs-pay-off-for-South-
Korean-chip-materials-makers) is that
chip materials industry blossomed in
South Korea. This episode leads me to
the corollary that dirigisme, if one is the
underdog, is a very effective tool worth
many many marshmallows. Not many
give credit to George Fernandes—then
the Minister of Industries—who ejected
IBM, along with Coca Cola, out of India
in 1977 for exercising exclusive control
in their Indian operations. This was
a seminal event in the establishment
and growing of India’s software and
computing industry. As an aside,
throwing out Coca Cola was also
useful in mitigating the debilitating
consequences of excessive sugar
consumption and the depletion of
water from aquifers that soda industry
employs.

dirigismic incidents with Japan within this decade.
Dirigisme can be rewarding when one is at the bottom and getting

going on an new path. Protection provides a chance to establish
oneself. But, in turn, it also is a trap. Protected industries become
comfortable in status-quo. This is the story of India of the oligarchs-
politics industrial complex for many decades after independence.
No desire existed to keep rising that is essential to avoid the income
trap, and to take control of future. The long arm of this story exists
in India’s information information industry. It is a back-end office
of information tackling for the West. There exists no equivalent of
Baidu, Huawei, SiFive, Biren, Tencent, BYD, and so many other high
technology companies across various industries that China has built
without having been the world’s back-office supplier.

Open software is one clear way of becoming free of external influ-
ences and for exercising control that can be leveraged to becoming
the higher-end source for the world. One needs to be competent
in understanding the pitfalls, the hidden trapdoors, the bugs, and
everything else that complexity has, but it removes a nation or a com-
munity from being blocked in its aspirations by another.

6.7 Education for free flow and leadership

This stress on openness and using open work of others just stresses
the importance of education as a flow-driven and leadership-driven
requirement of technology even more. Germany, as I had stressed in
the past writing, designs for the needs of the entire flow and statics
of a needs chain, thus making it very efficient. Problems do not crop
as often as bottlenecks, friction and unnecessary heat-like waste in
energy in effort avoided, much of the energy goes into productive
purposes such as education of the young in a sheltered environment,
their freedom to choose, and sufficient numbers of educated and
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trained people who join industry or join academia come about at
the end of the chain keeping the growth alive and vibrant. This is
essential to continuation and its quality is important to achieving
leadership.

Education has its own very unique character. One needs a large
body of core learning that makes the later part of creativity and
intellectual vibrancy possible. Multiplication as a rote learning is
essential to being able to use it as a tool and to move on to higher ob-
jectives. Calculus is essential to any understanding of complexity and
how to deal with it since second-order coupled equations are perva-
sive. Exploring behavioral patterns that give us some idea of what
is just right, or what will cause an undershoot or overshoot, even-
tually all goes back to calculus. The effects are integrative, so if one
doesn’t know differential calculus and integral calculus, it is hard to
take a person seriously who is entirely relying on historical patterns
that may not really hold true in the present setting. Dynamics and
open boundary conditions are all at play. These essential learnings
of mathematics and different disciplines make the freedom for being
creative possible.

In addition to this scientific analyticity, there is a very essential
need to truly appreciate that what one doesn’t know is a far far larger
information space than what one knows. This goes back to Brecht and
his statement of science and limiting errors. This what-we-do-not-
know part comes from not just posing questions and acting on them,
which we all do, but truly asking questions of principle that are
much deeper. It is through such an approach that one arrives at new
points of view. This is insight and some understanding of order in
a dynamic environment. It enriches the experience and together, all
these, make it possible to think through more confidently, and be
creative.

In the 19th century, two models of modern education arrived
in the world. The first was the Humboldt educational model that
the university is the environment where students turn to being au-
tonomous individuals and world citizens, so the education must be
organized to raising independent multi-dimensional thinkers who
care about the natural world possible. To a large extent, the German
model has stayed true to this objective with additional modern spe-
cializations and world excellence in all intellectual endeavors planted
at the top in graduate education and research in the university and at
the institutes. The second model was with the arrival of Johns Hop-
kins University with research and modern problems, medicine as a
science being the seed at that time, forming the core of the educa-
tion endeavor. Both have been successful, yet times are different too,
and education too needs to fit into its local environment, the needs
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of the society, and in science and technology, the industry’s future
needs that certainly Germany seems to have a good historical record
of figuring out.

In the modern world. In the Hopkins model, this can lead to prob-

For India, from what I can see, it is
data sciences for the past decade. The
education for it, however, is mostly
a higher level of multiplication table
learning in the form of coding skills.
Not the deeper nature of what the
meaning of the data is, the fallacies
there are in statistics, and others. Such
large-scale training in a subject that
suddenly crashes because technology
moved elsewhere or the froth did not
work out, can lead to large disappoint-
ments. AI/ML developments are primed
to displace rote coding. Semiconductor
education has had this boom and bust
cycle in USA. I keep my fingers crossed
for AI/ML. Certainly the prognosis from
all the layoff news from Meta, Google,
Microsoft, IBM, et cetera, doesn’t look
as good at least for a few years at the
moment.

lems of overshoot and undershoot as technologies cycle, students,
susceptible and for many, driven by the vector of where the media is
directing their mind, are often optimizing future earnings expecta-
tions and the inner appeal to them of the subject.

The Hindi expression that comes to
mind is `̀ bhediya dhasan,´́ that is,
herding of sheep in English. I was ac-
cused to be party to this phenomenon
by a very bright IITK student friend of
mine when I moved from being a stu-
dent of physics to electrical engineering.
What has kept getting progressively
clear to me is that I loved both, the
physics—of really figuring unknowns
out—as well as engineering—of doing
something real with hard work, mind
and hands. Fortunately, my life kept
evolving as an entanglement of physics
and engineering, so I never really left
either, the horizons just kept expanding,
and I am grateful for this luck. This is
very Humboldt like with a Hopkins top
hat.

The modern need for being leaders in science and technology is
for a blending of both the Humboldt foundations and the Hopkins
research drive, but with the needs of modern science and technology
in both. Critical thinking, problem solving, asking deep questions,
self management, working with others, being adept at technology
use, and the core literacy of sociology, psychology, and other such
explorations as well as what the artists and writers have to say, are
important in this modern education.

Figure 6.18: Times higher ed-
ucation’s list of the premiere
universities of the world. Source:
www.timeshighereducation.comstudentbest-
universitiesbest-universities-world.

At the turn of the century, both China and Germany outlined
policies and effort to place their higher education and research in the
upper echelons. China’s objective was to place 15 universities in the
world’s top 100, Germany’s was to build up a select set of centers of
excellence. A decade-and-a-half later, China’s success (Figure 6.18)
with its effort are quite visible. Tsinghua and Peking universities
are very clearly in the very best group of the world. I even suspect
that the common lists with their different criteria, although they are
gamed by all, are not truly reflective of intellectual excellence at the
institutions. My list will have MIT, Caltech, Stanford, and ETH at the
very top, and I will not shortchange University of Chicago, which
has a remarkable emphasis on developing a keen intellectual mind.
These lists also do not reflect Germany’s eminence. Between its Max
Planck Institutes for the exploratory and Fraunfhoffer Institutes for
the practical, and such historic places as Munich, Aachen, Gottingen,
and others, and looking at the number of Germany-based Nobel
Prize winners over these decades, it is enormously successful without
being so measured by the faux criteria. Tsinghua and Peking are
constantly in the news with developments in modern areas such
as quantum computing and cryptography and networks as well
as in biology. There exists even a quantum key distribution based
nearly 5000 km length secure fiber infrastructure. This is not trivial
technology and is a compelling example of success in technology and
science from the universities. This is also reflected in the well-ranked
scientific publications (Figure 6.19). Again, as with ranking, this is
not a very convincing statistic, some of the most powerful work is
only recognized as such decades later since it is too esoteric or too
few people in that domain, but it is certainly evidence that in all the
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currently widely pursued science areas, China has placed itself at
the top of list. So, both in its education and research quality, it has
bootstrapped itself up to be on par with Western world.

Figure 6.19: Top 10% papers count.

India’s, unfortunately, is a sad tale. Even as there are individuals
at scattered institutions, who can be seen as leading thinkers and
doers, most institutions and most teaching just does not bring out
the passion and joy of learning and discovery and all the breadth
of advanced science and engineering that is constantly expanding
wider. The education is too stuck in the past, employs too much rote
methods, and far too much of testing and grading that usually goes
together with the rote methods. The young mind is still forming its
neuronal network and its thinking and probing and doing style till
the age of 30, of which the college year age is the most vital. This is
when one has left the security of home, one is an explorer and trav-
eler in the vast unknown, and it is the curiosity about this unknown
that needs to be promoted, buttressed, and supported with learning
and learning style. Instead the students get beaten down into sub-
mission, and only a few escape this tyranny. The consequence is that
independent of what engineering or sciences one have pursued, the
student becomes an income-oriented cog in the data machine. No In-
dian company can be contrasted with any of the Chinese successes in
leadership of new directions and new products that lead the world.

Rote teaches reproducing, copying, and refining.
The educational methods of India need a Humboldtian revolution.
To this I add the autre of dirigisme. Dirigisme can lead to failures,

as the 5th generation project and export controls have been for Japan.
India too responded to this excellence push effort by establishing an
initiative of institutions of eminence. It is a heart-breaking story. I
looked up information on the current state. One of the institutions of
eminence is Jio Institute, which at the time of the start of the initiative
had no students, but 52 acres of land. Today, it has 2 graduate pro-
grams, 120 students, and 6 faculty. Pathetic. Buildings alone do not
make an institute. Creative students and faculty, hard work, world
recognition of the work, local impact, and serving humanity does.
Even Caltech, one of the smallest superb institutes of the world, with
about 2500 students (2/3rd graduate and 1/3rd undergraduate),
has 300 faculty, occupies about 400 acres in the middle of the city of
Pasadena. And each output from Caltech over the past 100 years is a
gem worth reading.

Excellence is excellences, no compromises, strong expectations,
commitment to research and good teaching, and constant striving
for getting better and better at the top of the world’s research. There
is a complete disconnection between education and aspirations, and
the disconnect in the present form, guarantees a lower income trap
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where one is going to remain a follower.
This serves to debate what an aspirational country that wishes

to reach back to its place in the upper echelons of the world that it
occupied in distant past must do. The lessons of this semiconductor-
oriented discussion are just as appropriate to many of the other areas
of science and technology—biology, transportation, agirculture, et
cetera—that the country will need to excel at.

Being a leader in semiconductors and using semiconductors to
improve one’s lot and not be caught in a trap requires a lot more
than building a fab or two at the highest advanced technology point
current at that time. Facilities become obsolete in half a decade, at
which point they certainly can be repurposed for lower points of
the value chain, such as for transportation needs, or others. But, to
make wealth and grow requires the ability to exploit that most ad-
vanced technology. Today, this is now being driven by AI/ML such as
in Nvidia’s or Biren’s technology, or the high-end networking hard-
ware such as of Huawei. In five years, there may be an introduction
of quite different pieces of technology, which also needs to be created
and developed. There is also a value chain in exploiting the semicon-
ductors, providing for the semiconductor technology, and to exploit
the semicconductor technology in any significant way, being the stan-
dard setter who also controls the operating systems of record. All
this requires a wide and broad ecosystem spanning skills, education
and infrastructure.

This ecosystem is one for both the physical semiconductor value
chain as well as for the industry that makes it possible and education
that makes the continuing progress come about.

Figure 6.20: Semiconductors and
semiconductor-related higher value
efforts with an education chain that
supports it.

Semiconductor plants at the high end cost $10B investment. Yet
they employ only a few thousand employees. Those that keep the
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automated machinery humming, those who are doing the plumbing,
characterization, checking, technology day-to-day fixing, supplies,
in-and-out scheduling and so on. This nets as a cost of $5M per em-
ployee. In this form it makes no sense. It also makes no sense if by
dirigisme, when a country undercuts another country’s strength,
critical supplies or necessities that make a plant hum are cut off. India should remember incidents such

as nuclear sanctions from Western
countries and Japan, or space research
sanctions by United States.

This highest cost effort becomes very productive and useful if one
expands it to build the entire value chain (Figure 6.20) that makes
semiconductor technology possible. These are much lower cost,
employ many people, and the expertise then makes the country a
supplier to the world in a far broader domain. In this, I would in-
clude process materials, such as wafers, ultrahigh purity chemicals
gases and liquids, the vast plumbing, automation, electric, cleanli-
ness and safety infrastructure that goes together into an automated
modern clean room. Just as important is the creation of a process and
characterization tool industry: tools for patterning such as extreme
ultraviolet, and the automated multi-chamber plasma-based gas or
even liquid employing tools, optical and electrical tools for in-process
and post-process characterization, and others. Europe—Sweden, Aus-
tria, Germany, Switzerland, Holland—have shown remarkable suc-
cess in these tasks through their engineering talent and that talent’s
recognition as a very important profession. These are specialized
technology-demanding tasks that are necessary for a fabrication fa-
cility to work. Between all these tasks, one has a demand for broader
set of capabilities and expertise from nearly all the engineering dis-
ciplines, these ancillary industries can be distributed around the
country, some are low cost, some higher, but they all provide large
well-earning employment.

Memories, dynamic and non volatile, go through boom and bust
cycles as demands change. But, more transistors appear in memories Micron technology just said that its

revenue decreased by 50% and had a
loss of more than $2B in the quarter.
The last quarter was similar too. China,
in a dirigismic act, has placed Micron
memory products under review for
security purposes, similar to what USA
has done to a number of Chinese com-
panies’ products. When computing de-
mand drops, usually when economies
are struggling, memories reflect that as
compounding. An organization needs a
spine to get through booms and busts.

than in the logic, a ratio bordering on 80%. Our cell phones need to
store for fast access. All the transactions need to store the data in a
way that it can be quickly processed. This is all in memories in close
proximity of the processors. Even in processing such as the most ad-
vanced tensor processors, working with data—this data must reside
as it is processed—is in memories built into the circuit. In this case
right next to processing parts for immediate access. Memories may
be very economically cyclical, but without memories, computing and
communications and automation and all electronics cannot exist.

Even succeeding just at this part of semiconductor industry is not
going to be rewarding to a country.

The value creation and large-scale talent need is higher up in the
value chain, for which semiconductors are the foundation. China has
been very successful at this building out through the vast array of
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companies that compete on equal terms with the USA counterparts.
This is deployment of intellectual heft on top of a physical structure
that is by its nature demanding and capital intensive.

To take advantage of the semiconductor technology capability, one
has to look at where it is used. This is the walled gardens that have
been built by companies either through the designs themselves or
the software that underlies the usage. I place the following as the
important components of this strategy.

• Lead in chip design. This is the immediate demand and usage
creator of the semiconductors. Processors, memories, sensors,
graphical engines, all the edge-of-the-network creations, all the
microcontrollers that run appliances, any system with any level of
automation needs design. Except for the highest-end hardware,
these are commonly usable designs that can be integrated across
various platforms. The most important necessity for such designs
is common instruction sets, and other common standards. We have
seen how the world has moved to nearly 1/3rd of the designs in
RISC-V. There is a tremendous talent pool of engineers, such as
those involved in data tasks, who can also learn these tasks. India
needs to lead in design and this is do’able using RISC-V—an open
platform—by being the place where the talent exists for what is
the most essential integrative task in the use of semiconductors.

• Design needs design tools. Tools that work with accuracy in ther-
mal, electrical, symbolic, behavioral domains for digital, analog,
and optical signaling. Such tools are complex, a good challenging
software and mathematical task to which AI/ML is going to bring
clever new methodologies. One of the early sanctions on China

was the denial of high-end design tools.
No tool, no future, except if one figures
out new ways or develops one’s own.

• Make the designs, the chips, and the hardware that is at the high
end. This list is broad: network, optical networking systems, cloud
systems of computing, the AI/ML systems and the supercomputing
systems that use the highest end processors. This is where a large
bulk of the profit, despite fewer number of products, is.

• None of the above succeeds without control of the operating sys-
tems. Google, Apple, Microsoft succeed by trapping individuals
in their domain. A large country with a larger user community is
quite capable of creating its own open-source underlying operat-
ing systems applicable to smartphones, computers, simulations
and chip design, and the AI/ML and the supercomputing tasks. As
well as new ones that will come that it must create by excelling in
education and research. Through its success in the UTI and Aad-
har systems, India has shown that such control also leads to lower
cost for the populace and security at the same time.
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This above collection is well within India’s capabilities and tradi-
tions. It is talent demanding, not capital demanding. As a set of tasks
that are intellectual and demand thinking, it is one that is likely to be
of large student interest.

The sustainment of this large value chain requires both mid-tier
talent and high end talent. So, there is much in these tasks that re-
quires an education system that does need to change and be compet-
itive in the modern advanced world. None of the Indian institutions
are there, select faculty at select universities and institutions are.

A world-class university in research and education—Caltech or
MIT like—has to be non-compromising and demanding from both its
faculty and its students. These are institutions that are not copy-and-
paste and executive bullet point elevator pitch institutions that are
inherently biased and fallacious result of Occam’s razor. Institutions
need to have original thought, creative thought and practice, and
need to fit in the local environment and its needs in space and time.
There have to be world-class standards that must be strictly adhered
to. The world-class standards are not publication metrics of num-
bers of publication, but research output that others sit up and notice
and follow up on. Education is the instilling of creative exploration
as a natural act in the student. The purpose of education is to fire
up a young person’s mind of the immense possibilities ahead with
the learning they have achieved. It is not about stuffing them with
`̀ facts.´́ Neither Caltech nor MIT started as major universities. Both
were vocational schools about hundred years ago. Caltech started
as Throop and MIT as Boston Tech. Good things take time and care.
Fast and slow need to be balanced. It is not possible to hire top-class
faculty in one fell swoop. There are not that many people beyond 4σ.

Using Josephson junctions for comput-
ing was one of the high-risk research
efforts at IBM Research in the 70s and
80s. There were many lessons from this
effort, similar to that from an earlier
effort of deploying tunnel diodes in the
1960s, technical in that directionality,
gain, fan in and fan out, signal-to-noise
ratio, reproducibility and robustness, et
cetera, all really matter in integration.
But more important, from Josephson ef-
fort and some from the silicon-oriented
effort, was a short-and-long message
for success. One cannot expand people
numbers rapidly no matter how time
sensitive a task. One ends up with a
normal distribution for that grouping.
Quite a few of the maximum likeli-
hoods ascended the organizational
structure, in turn, hurting the entire
research-and-beyond enterprise. When
the going gets tough, it is the folks
with inner strength—strength accu-
mulated from many domains but with
the important characteristic of belief
and passion backed up by learning
and experience—that make it through
the walls. Lucent, the vestige of old
AT&T and remnants of the Bell Labo-
ratories, couldn’t because of a hardcore
salesman with golf course fetish was
in charge. IBM had Akers. He gave
Bill Gates the keys to the personal
computer operating system, Gates
immediately acquired Gary Kildall’s
DOS, repackaged it, and crossed the
moat into the castle in a Trojan horse.
IBM’s recent story with AI has been
of Watson, named after the luster ac-
crued from the victory of `̀ AI´́ over
Kasparov in a chess game in the 1990s.
It pushed Watson AI hard in medicine
with salesman-like false promises and
failed. Medicine and health care are not
the same as chess. Judgments, specifics,
experience, past, details, and so much
more of what one does not know matter
in making life-and-death decisions of
cancer care. It is not chess with hard
rules and all the necessary information
right there on the board. Health is real
world. Chess is a parlor game. From
what I see, IBM has learned this lesson
with its offerings of different AI models
for different limited domains. This
kind of understanding and foresight-
edness is critical in the management.
Foundational learning and people
skills both matter. This drama plays
out in academia too. People with little
research contributions, no aspirations
towards learning and pushing teach-
ing frontiers, and beholden to Google
searches—as gate-keeping messengers
of a system—eventually rot great or-
ganizations. Seeing long is hard. My
own experience of of finding the most
academic of the environments in an
industrial laboratory has amused me
ad infinitum. The European univer-
sities come closest. The private USA
universities are mostly non-profits for
profit.

Culture building and maintaining takes time and constant effort and
discipline and awareness of the two marshmallows principle. Always
hiring somebody brighter than oneself is one principle with which
one cannot go wrong.

We as faculty like to work with problems that stay within our
control. These are inevitably highly constrained and we all have our
own ways of finding an optimal spot which suit our methods and
objectives. This worked before, but I do not believe it will work if ev-
erybody continued doing this. The science and technology world has
changed. A large fraction of the most interesting problems are now
complex. They are integrative. We now have tools to deal with com-
plexity. AI/ML, 500 years of learning, hardware, new ways, can all
be brought to bear on the difficult problems. Hardware design, chip
design, materials design, process design, integration, systems, and
use of systems by people are all complex integrative task to which
many directions of technology feed. These are perfect problems for
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deploying learning in AI/ML that has only arisen in the past half a
decade. We must embrace complexity as a way to become leaders.
Systemically, of course, this also means mitigating friction, creating
painless processes, have an appropriate organization that rewards
and shelters, and encouragement. Success, change and well being of
the nation will be the reward.

For a flow of the growing society’s march to high value requires
this stress at the very best institutions, but also a stress—as in Germany—
of a high-expectations education in the march from childhood to
adulthood. So, pre-school, primary schools, middle schools, high
schools all matter just as much as college education. This educa-
tion has little chance to succeed purely by respecting a profession,
as ancient cultures often do. It requires infrastructure and well-paid
teachers that attracts the group of college graduates with a love for There is a beautiful anthropological

book by David Graeber titled Bullshit
jobs. A theory, (ISBN 978-1-5011-4331-
1, Simon & Shuster (2018)) that is
an expansion of the arguments of a
similarly-titled essay that is available
on the internet and was written during
the period of the Occupy movement.
Occupy movement happened during
a very difficult financial period for
people, while Wall Street was, as it
does all the time, making hay. He
argues that it is easy to figure out what
an essential job is. Just look at the
salary for it. In USA, this applies to
the nurses, the check-out people, the
food servers, et cetera. Hard work and
subsistence living. School teachers are
such essential workers. Bullshit jobs
are the ones where the person goes
home every night, he may be rich,
but he wonders as he lies on his bed
trying to go sleep what his contribution
to human life is. Bullshit is a proper
dignified civil word. The essence of
bullshit is not that it is false, but that it
is phony. A liar needs to keep the truth
in view in order to concoct the lie. The
bullshitter is utterly indifferent to truth.
I have met such people in industry,
academe and government. Since I was
at a great research company in my early
working life, my bullshit rank order
is government, academe followed by
industry. Academe is quite a confusing
place because of the conflict between
not-for-profit, teaching and research,
and keeping the business of academe
going. Too many people, specially in
administration, who move things from
here to there, and from there to here.
Bullshit, appears in this respectful place
in another great small book, On bullshit,
by Harry Frankfurt published by the
Princeton University Press.

education, who are qualified, and who can pass on and demonstrate
that love to the growing mind.

The country needs entrepreneurs, breadth of ideas being tried out,
and also top-class faculty. The change that I see from my time is that
while in my time, the best were interested in being in intellectual life
and aspired to be faculty members, today it is high-paying jobs. We
need to keep promoting and keep creating and tweaking mechanisms
for starting up of new ideas from the bright young people who also
are fortunately interested in staying in the country which is increas-
ingly a country of opportunities. It needs to be done with processes
that prevent exploitation and financial chicanery that is all too com-
mon. It also means India needs to find ways to get past its oligarchic
nepotistic ways that are unfortunately still too common and so easy
to see not just in commerce, but also in media, and the culture, which
unfortunately has been reduced to primarily a Bollywood culture.

Independence of thought, valuing opposing thoughts to improve,
not defensively reacting to every opposition, making mid-course
corrections upon acquiring new insights, are all necessary virtues
of good leadership. Future is never quite predictable. One can only
make good judgments and good judgment come through wisdom.
Wisdom is decision making based on information and insights and
belief in oneself acquired through past successes.

The mechanisms of the higher end higher value science and tech-
nology seeding, germination, and growing need to be centered on
ideas, ability, and intellectual depth.

A technology-society reason to particularly stress this point is
another example of short-and-long: that the time-scale at which
technology changes is far far shorter than that of the governance
in society. There are constant disconnects. It is, for example, visible
right now in the social impact of social networks on loss of social
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learning by children, polarization in the adults, the new forms of
addictions brought by internet and cryptocurrencies, none of which
the governance has been effectively able to respond to. Education,
intellectual heft, and model governance are essential to avoid major
collapses arising in the rise of the modern rise of technology and
what it makes possible.

6.8 Judging and awarding world-leading efforts

I note fallacies appearing in funding award mechanisms, on one
side where Occam’s razor fallacy prevails with power invested in
an individual, or on the other side, a collective that usually ends up
being people who have time or who are themselves in search of such
funds. In USA, for example, much of NSF panels are composed of
people starting on their research journey and evaluating proposals
that have much in common, with only a few breaking new paths.
The breaking new paths naturally doesn’t find as much appeal since
a normal distribution function is evaluating a normal distribution
function. A median of a collection of such reviewers should hardly be
expected to reward ambitious projects. It is important to sanity check
ambitiousness. Is it on firm grounds, what has been missed, what is
a counterfactual, and if it passes this test, is it by a person who can
be expected to follow through despite the numerous fundamental
and practical difficulties that arise in any creative undertaking. If it
passes these tests, then it should be funded. NSF, by and large, fails
this test. It is only with a program manager who is astute enough,
has experience, knows and appreciates the ebb-and-flow of research
who can overcome the systemic inertia.

Awarding funds for an intellectually demanding and expected to
be world leading task can never be a democratic spread-the-wealth
mechanism. An averaging of judgment by a normal distribution
inevitable leads to an averaging of final results. This is the story of
human history.

There are deviations from this model that succeed for some time
before they too get overcome with gathering moss. A successful
one has been DARPA led by a rotating group of people who have
sampled the world of academia and industry and who are interested
in national service as also intellectual pursuits of changing world in
their specialties in their lifetime. Fair sums of money, a rigorous time-
bound checking, a focus on the most advanced areas of technology,
and a view to its move to society. It may be driven by defense, but
it ends up in the society. The progress in the integrative high-end
technology of self-driving cars, where LIDAR, multidomain signaling
or fast machine learning and AI is the essential leading to the present
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robotics and AI/ML of the world, or in plant-based generation of
vaccines leading to low cost vaccines, or the autonomous drones
which required low energy flying technology and is now useful in
improving agriculture go back to DARPA-seeded ideas. They are a
success because of the ambitiousness with soundness of ideas, the
selection, and the no-compromise expectation and reward. There is
no room in this for excuses or flattening a distribution. The money
can be better spent as projects show failures. Failures are learning
tools but shouldn’t be unproductive sinks of precious funds and
talent.

6.9 Last word

I have written about a matter of inference that is replete with com-
plexity and is subject to large errors. We are all adults. Many class-
structured societies have a tendency to treat others down with faux
praise, or worse. The scientific way is to draw on all the information
and past experiences across all the domains that make life and living
and the concept of country a social matter. In a society with wide dis-
parities, and of historic angst, the idea of growth balancing short and
long objectives can be hard. But, history and times and a position
and flow of the current state in the global interplay is a zugswang
opening for India. A prior zugswang for India was when

the USA sent off the English, and the
English chose India as the next target. I
am inextricably entangled in both, and
in a way, that should not be surprising
as a Markovian connection.

We are, I believe, at the threshold of another order from disorder,
not unlike what one sees sometimes in sciences if phase transition,
one where there will be an order defined by military and security
and related alliances, another by economic related by some schema
of rank ordering of high value to value creations by the education-
industrial-social framework of a country, and the the third of a digital
order, where technology companies—not unlike British and Dutch
East India company—will set the flow of information that is at the
heart of the the functioning of the physical world. History teaches us
lessons, philosophy teaches us a way to think through such complex-
ities of existence, and information teaches us to minimize our biases.
Each country will have to find its path.

I started with Bertolt Brecht’s remark to view science as a way to
limiting errors rather than providing perfect answers. I believe this.
So, I end with another of Brecht’s poem, An den Schwankenden, that
has often given me solace in my darker moments. The following is
the last stanza of the poem. This too I believe. In an English transla-
tion,
To the waverer
· · ·
Whom do we still count on?
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Are we just left over, thrown out of the living stream?
Shall we remain behind? Understanding no one and understood by no one?
Have we got to be lucky?
This you ask.
Expect no answer other than your own.

This is the lesson I learned from my student days at IIT Kanpur.
Erwarte keine andere Antwort als die deine. Danke shön.
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