Cabin pressure control system of an aircraft maintains cabin pressure in all flight modes as per the aircraft cabin pressurization characteristics by controlling the air flow from the cabin through the outflow valve of the cabin pressure control valve. The movement of outflow valve in turn depends on the air flow from the control chamber of cabin pressure control valve, which is controlled by the clapper and the poppet valves. These valves are actuated by absolute pressure and the differential pressure capsules, respectively depending upon the operating flight conditions. Mathematical models have been developed to simulate the air outflow rates from the cabin and the control chamber of cabin pressure control valve during steady-state and transient flight conditions. These mathematical models have then been translated into a MATLAB program to obtain plots of cabin pressures as a function of aircraft altitudes. The mathematical models are validated for standard cabin pressurization characteristics of a multirole light fighter/trainer aircraft. The model developed, thus can be used to produce a number of variants of cabin pressure control valve to suit different cabin pressurization characteristics.