Indian Institute of Technology, Kanpur Proposal for a New Course

- 1. Course No: SPA201
- 2. Course Title: Introduction to Astronomy and Astrophysics
- 3. Lectures per week: 3 (L), Tutorial: 0 (T), Laboratory: 0 (P), Additional hours: (0-2): 0 (A), Credits (3*L+2*T+P+A): 9, Duration of Course: Full Semester
- 4. Proposing Department: Space Planetary & Astronomical Sciences & Engineering (SPASE)
- 5. Proposing Instructor: Sharvari Nadkarni-Ghosh/Pankaj Jain/Amitesh Omar
- 6. Course Description
 - (A) Objectives: The course aims to introduce students to basic ideas and concepts in modern Astronomy & Astrophysics. (B) Contents (preferably in the form of 5 to 10 broad titles):
 - 1. **Historical Introduction** (2 lectures) History of Astronomy (ancient Indian and Greek astronomy), Constellations & Nakshtras, magnitude scale, Parallax
 - 2. **Astrometry** (6 lectures)
 - Celestial Sphere, Coordinates, Rise, set, and tracks of celestial objects, Precession, Basic calculations, Introduction to Calendars, Seasons on Earth, Eclipses & Transits, Hands-on sessions using Stellarium, cosmic distance ladder.
 - 3. Universal Physical Principles and basics of radiation (6 lectures)
 - Newton's law of Gravitation, Conservation of energy and momentum, Electromagnetic Spectrum, Thermal radiation, Continuum and spectral line emission, examples of radiation from astrophysical sources
 - 4. **Observing tools** (6 lectures) Types of telescopes, signal & noise, sources of noise, signal to noise ratio, Gaussian & Poisson statistics, detection probabilities.
 - 5. Our Solar system and other exoplanets (6 lectures) Kepler's laws and objects in the solar system, Planetary Atmospheres, Planetary Rings, exoplanets - detection methods.

6. Structure and life-cycle of stars (6 Lectures)

Source of energy, Hydrostatic Equilibrium, Mass loss, Evolution (colour-magnitude, HR diagram), Star birth, Planetary nebulae, Novae, Supernovae, Gamma-Ray Bursts, Binary Stars, White dwarfs, Brown dwarfs, Neutron stars, Black holes,

7. Milky-Way, extra-galactic astrophysics and cosmology (8 Lectures)

Structure of Milky-Way, Types of galaxies, nearby galaxies, Kinematics, Dark matter, redshift measurements, galaxy clusters, Physical conditions in Interstellar Medium & Intergalactic Medium, Tracers of interstellar medium, hands-on session using galaxy kinematics data, basic introduction to cosmology, dark matter and dark energy

- (C) Pre-requisites, if any: None.
- (D) Short summary for including in the Courses of Study Booklet: This course will provide a foundation to UG students in the area of astronomy & astrophysics. Topics include a historical introduction, astrometry, universal physical principles and basics of radiation, observing tools, solar system and exoplanets, stellar structure and evolution, milky way and other galaxies, and basic introduction to cosmology
- 7. Recommended Books:
 - The Cosmic Perspective Bennet, Donahue, Schneider, Voit.
 - Introduction to Astronomy and Astrophysics Pankaj Jain
 - Descriptive Archaeoastronomy and Ancient Indian Chronology -Amitabha Ghosh
 - The Physical Universe Frank Shu
 - Foundations of Astronomy Michael A Seeds
- 8. Any other remarks:

Dated: Proposer:

Dated: DUGC/DPGC Convener:

The course is approved/not approved

Chairman, SUGC/SPGC

Dated: