Indian Institute of Technology, Kanpur Proposal for a New Course

- 1. Course No: SPA601
- 2. Course Title: Space and Astronomical Instrumentation
- 3. Lectures per week: 3 (L), Tutorial: 0 (T), Laboratory: 0 (P), Additional hours: (0-2): 0 (A), Credits (3*L+2*T+P+A): 9, Duration of Course: Full Semester
- 4. Proposing Department: Space Science & Astronomy
- 5. Proposing Instructor: J. S. Yadav & Pankaj Jain
- 6. Course Description
 - (A) Objectives: The course aims to introduce students to instruments and detectors used in Space Science and Astronomy. It will introduce the basic principles and techniques, such as, detector design, calibration, background, space qualification and data acquisition used in this field. It will describe the challenges faced in the Space relative to ground based instruments. It will describe some instruments, such as, the India's first space observatory; Astrosat, LAXPC instrument onboard Astrosat, Moon and Mars missions in detail.

(B) Contents (preferably in the form of 5 to 10 broad titles):

S. no.	Broad Title	Topics	No. of
			lectures
1.	Introduction	Historical perspective, background,	3
		basics of space observations,	
		differences w.r.t. ground based	
		instruments, challenges	
2.	Space observations	Electromagnetic spectrum, continuous	6
	(what we observe)	and discrete spectroscopy, Cosmic rays,	
		solar wind, solar flares, magnetic field,	
		Spectroscopic techniques to deduce	
		composition and physical properties	
3.	Particle/Photon	Interaction of charged particles	8
	detectors	and photons with matter,	
	& type	electromagnetic wave	
	(focusing &	detectors, charged particle detectors,	
	non-focussing)	such as, nuclear emulsions, GM	
		counters, proportional counters,	
		scintillators, semiconductor detectors etc.	
4.	Basic	Modelling background, basic	8
	techniques	techniques in detector calibration,	
	and past	data acquisition and space qualification,	
	instruments	challenges faced in space observations,	
		effect of Earth atmosphere and	
		past space instruments	
5.	Planetary	Moon and Mars missions,	6
	space missions	Planetary mapping, meteorites and	
		moon samples	
6.	India's first	All five instruments which include	5
	Space observatory:	all sky monitor, SXT telescope,	
	AstroSat	LAXPC, CZIT instrument and UVIT	
		telescopes (near optical and near UV)	
7.	LAXPC instrument	detailed description of LAXPC	6
		instrument, challenges in realizing	
		the payload, performance in space, data	

(C) Pre-requisites, if any: N/A

(D) Short summary for including in the Courses of Study Booklet: Basic principles of space and astronomical instrumentation and detectors, electromagnetic wave and charged particle detectors, spec-

troscopy, spectroscopic techniques to deduce composition and physical properties, detector design, calibration, background, space qualification and data acquisition, detailed discussion of a few selected observatories, such as, AstroSat, Moon and Mars missions.

7. Recommended Books:

- Radiation detection and measurement, Gless F. Knoll
- High Energy Astrophysics, M. S. Longair, Volume 1 and 2
- 8. Any other remarks:

Dated: 23.06.2022 Proposer: Pankaj Jain

Dated: 23.06.2022 DUGC/DPGC Convener: 3 m 2 m.

The course is approved/not approved

Chairman, SUGC/SPGC

Dated: