Indian Institute of Technology, Kanpur Proposal for a New Course

1. Course No: SPA661

2. Course Title: Stars and Stellar Evolution

3. Lectures per week: 3 (L), Tutorial: 0 (T), Laboratory: 0 (P), Additional hours: (0-2): 0 (A), Credits (3*L+3*T+P+A): 9, Duration of Course: Full Semester

4. Proposing Department: Space Science & Astronomy

5. Proposing Instructor: Pankaj Jain and Amitesh Omar

6. Course Description

(A) Objectives: The course aims to introduce students to basic principles of stellar structure and evolution. It will start with a detailed description of different kinds of stars, classification of stars based on the observed spectrum, and the Hertzsprung-Russell (HR) diagram. It will describe the basic equations of stellar structure and evolution. The different nuclear fusion reactions which contribute at different stages will be discussed in detail. The course will also provide detailed description of stellar evolution from birth to the formation of compact star or a black hole. The Physics of compact stars, i.e. white dwarfs, neutron stars and black holes will be discussed along with explosive transient phenomenon, such as the supernovas.

(B) Contents (preferably in the form of 5 to 10 broad titles):

S. no.	Broad Title	Topics	No. of
		_	lectures
1.	Overview	Introduction to Stars,	4
		length and mass scales,	
		interstellar medium,	
		Photometry, Blackbody radiation	
		magnitude scale, color index	
2.	Stellar	Stellar spectra, Saha equation,	8
	Spectra &	Hertzsprung-Russell (HR) diagram,	
	classification	Star clusters and Associations, Stellar	
3.	Stellar	Stellar structure equations, pressure	8
	Structure	temperature gradient equations	
		energy production, Rosseland mean	
		opacity, equation of state, radiative	
		pressure,	
4.	Stellar	stellar nuclear reactions, nuclear	6
	nuclear	reaction rate, standard solar model,	
	reactions		
5.	Stellar	formation of stars, pre-main	6
	evolution	sequence stars, Hayashi track,	
		main sequence and evolution beyond the,	
		main sequence, last stages of stellar	
		evolution	
6.	Compact	white dwarfs, neutron stars and	6
	Stars	black holes, supernova explosion	
7.	Binary stars	Kinematics of binary star system,	4
		Classification of binary stars,	
		Mass Determination	

(C) Pre-requisites, if any: N/A

(D) Short summary for including in the Courses of Study Booklet: Introduction to Stars and interstellar medium, Stellar spectra and classification, Hertzsprung-Russell diagram, Stellar structure equations, Rosseland mean opacity, radiative pressure, stellar nuclear reaction, formation of stars, evolution on the main sequence and beyond, the end stages of stellar evolution, formation of compact stars, white dwarfs, neutron stars, black holes, supernova explosions, Binary stars

7. Recommended Books:

- An Introduction to Astronomy and Astrophysics, P. Jain
- An Introduction to Modern Astrophysics, Bradley W. Carroll and Dale A. Ostlie

- Stellar Structure and Evolution, A. Weigert and Rudolf Kippenhahn
- Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, S. L. Shapiro and S. A. Teukolsky
- The Physical Universe, Frank Shu
- 8. Any other remarks:

Dated: Proposer:

Dated: DUGC/DPGC Convener:

The course is approved/not approved

Chairman, SUGC/SPGC

Dated: