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Abstract 

Stability of two layered long and narrow water bodies like 

lakes and reservoirs to 2D normal mode perturbations is 

analysed. The inviscid stability of these water bodies is 

studied using a non-Boussinesq framework. The base state 

velocity profile being analysed is obtained after applying a 

free-slip condition at the bottom boundary. The interfaces 

are characterized by the respective bulk Richardson 

numbers. Our analysis reveals instability over some range 

of wavenumbers and bulk Richardson numbers.  
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I. INTRODUCTION  

The effect of wind on lakes has been studied by researchers, 

particularly the effect on long and narrow lakes (Heaps & 

Ramsbottom [1], Bye [2]). Long and narrow lakes afford us 

many simplifying approximations. Due to being narrow we can 

ignore Coriolis effect (Hutter [3]). Coriolis effect becomes 

important when the width of the water body is comparable to 

the Rossby deformation radius. The lake geometry is assumed 

to be rectangular for simplicity. Wind flow is taken along the 

length of the lake, due to this transverse flow can be ignored. 

Presence of a sharp thermocline in the lake gives rise to two 

layered density stratification. The time-scale over which density 

stratification changes is the seasonal time-scale, while the wind 

changes on very shorter time-scales of the order of hours. On 

shorter time-scales of wind changes the background density 

stratification is essentially treated as quasi-steady. Mixing can 

be ignored on these shorter time-scales. As demonstrated by 

Heaps & Ramsbottom [1], working in the small deflections 

regime leads to non-linear effects being ignored, this greatly 

simplifies the problem. Using other simplifying assumptions 

like uniform and constant properties like viscosity and density 

in each layer one can arrive at the velocity profiles in each layer 

in terms of the wind forcing.   

Forcing by wind in a simplified sense can be assumed to 

work like a two-layered lid driven cavity flow. If this 

assumption is followed, the rectangular cavity will consist of a 

stable density stratification of two layers, over which a lid is 

dragged along the top surface. Such type of arrangement sets up 

a double circulation (clockwise in upper layer and 

anticlockwise in the lower layer ) in the system. In this paper 

we will analyse the stability of representative base state profiles 

that are step up in shallow lakes where the depth of each layer 

is around 10 metres and the lake is a few kilometres long. For 

simplicity we can assume that the wind flowing over the lake 

has a constant velocity (U1). Study of stability of lakes has 

applications in mixing of lakes and other similarly structured 

natural or artificial water bodies. Mixing in such water bodies 

affects the distribution of salt, heat, momentum and other 

chemical tracers such as pollutants and dissolved gases like 

oxygen which plays an important role in the health of aquatic 

flora and fauna. Classically instabilities are thought of as one of 

the mechanisms through which a transition takes place from 

laminar flow to turbulent flow (Drazin [4]). The present study 

may lead to a better understanding of the enhanced mixing that 

is caused by the instabilities which are taking place in lakes. 

Enhanced mixing can generate higher intensities of turbulent 

motions. By this present study we aim at trying to answer some 

of these issues.  

II. METHODOLOGY 

 

 

Wind forcing is assumed invariant over the time-scales of 

the rest of the processes. Fluid is assumed to be incompressible, 

Fig. 1: Layout and base state profiles 
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2D and inviscid. To model the process we use Euler momentum 

equations along with the incompressible continuity equation 

and material conservation of density.  We are ignoring 

transverse flow in the narrow and long lake, implying that the 

flow is 2D. Considering a flow in the x-z plane we have  
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All the above four equations are applied to both the layers of the 

water body. Density difference between air and top layer water is 

quite high therefore one cannot make use of the Boussinesq 

approximation. Boussinesq approximation can be used when the 

density differences are small, it neglects the variation of density 

in inertial terms and its effect is only considered in the terms, 

where the density variation is amplified by gravity. This leads to 

the filtering out of the sound waves in the medium (Turner [5]). 

Boussinesq approximation is applied at interface between the 

lighter top water layer and the heavier bottom water layer. We 

linearize the equations (1-4) about the base state horizontal 

velocity and density given by (5) and (6) respectively.  
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The base state profiles chosen are the broken line simplifications 

of the realistic smooth profiles that occur in lakes and the smooth 

profiles are given by Hutter [3]. The shear between air and water 

is responsible for the setting up of the base state profile. 

Following the seminal approaches outlined by Taylor [6] and 

Goldstein [7] we aim to obtain a single equation in terms of 

eigenfunctions of the vertical velocity. On linearizing and 

assuming normal mode perturbations of the form 

ˆ ( ) exp( ( ))z i x ct   we obtain the following non-Boussinesq 

Taylor-Goldstein equation. From the form of normal modes we 

can see that exponential growth will occur if Im(c) is non-zero, 

and the corresponding growth rate being αIm(c).  
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Here U,  are base state velocity and density respectively; ŵ is 

the vertical velocity eigenfunction; c,  are the wave speed and 

wavenumber respectively. Equation (7) obtained is similar to the 

one obtained by Barros and Choi [8] ,[9]. Solving equation (7) in 

Zones I, II, and III (see fig. 1) and applying pressure continuity 

and kinematic condition across the interfaces we obtain a quartic 

(in wave speed, c) dispersion relation. The interface between 

zone I and II is characterised by bulk Richardson number J1, and 

that between zone II and III is characterised by bulk Richardson 

number J2.  Bulk Richardson number is the ratio of buoyancy 

term and velocity gradient term (Turner [4]). The dispersion 

relation is solved numerically to generate growth rate plots [10].  

Some contour plots for the growth rate are shown in the results 

section. J1 and J2 are defined as given below in equation (8) and 

(9), respectively.  
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For simplicity we can assume that
1

 to be negligible as compared 

to
2

 , this stands true because density of air is orders of 

magnitude small as compared to the density of water. Such 

simplification is also done in case of water waves. Bulk 

Richardson numbers can be combined to give a stratification 

parameter, 1 2
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R 
ρ2 

(kg/m
3
) 

ρ3 

(kg/m
3
) 

95 

 

971.82 982.03 

983.20 993.54 

285 

 

992.22 995.70 

995.65 999.14 

Table 1: Some representative values of density and stratification 

parameter, R 
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III. RESULTS  

Results for some representative values of stratification parameter 

R are presented below. Density stratification can be present due 

to any stratifying agent that has long time scales of diffusion and 

advection.  

 

 

 

 

 

 

IV. DISCUSSION AND CONCLUSIONS 

As can be seen from Fig.2 and Fig.3, the normal mode 

perturbations undergo exponential growth for some range of 

values of bulk Richardson number J2. The wind velocities 

required for the perturbations to grow exponentially and for the 

instigation of instabilities are in the feasible range (see Table 

2).  Beaufort wind force scale is an empirical scale that gives 

the relation between wind speed and the observed effects that it 

has on sea or land (See Huler [11]). For R=95, wind forcing 

(U1) of 10.26 m/s translates to Beaufort number of 5 which 

signifies fresh breezes. Similarly for R=285, the wind forcing 

of 5.92 translates to Beaufort number of 4 signifying moderate 

breeze.   

Strong stable stratification requires large wind forcing and 

inertia to overcome the stabilizing effect of gravity, which tries 

to keep the denser fluid at the bottom (see Taylor [6] and 

Goldstein [7]). For Kelvin-Helmholtz instability to occur, a 

jump in the velocity profile is needed (Drazin [4]). In our 

system there is no presence of jump in the velocity, so Kelvin-

Helmholtz instability will not occur therefore the instability that 

is observed is a new kind of instability.     
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Max. 

Growth 

Rate R 

Wavelength                                 

(m) 

U1  

(m/s) 

U1  on 

Beaufort 

Scale 

0.277 95 27.34 10.26 5 

0.157 285 20.8 5.92 4 

Fig. 2: Contour plot for growth rate vs. J2 for 

stratification parameter, R =95 

Fig. 3: Contour plot for growth rate vs. J2 for 

stratification parameter, R =285 

Table 2: Maximum growth rate, the corresponding 

wavelength of the perturbations, and the wind forcing 
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