Department of Mathematics & Statistics

Ph.D admission written test

Time: 1 Hour Marks 60

NAME: December 5, 2015

Instructions

- 1. Write your name in **BOLD** letters.
- 2. For a real number x, we denote by [x] the largest integer less than or equal to x.
- 3. We denote by \mathbb{Z} , the set of integers, \mathbb{Q} , the set of rational numbers, $\mathbb{R} =$, the set of real numbers and \mathbb{C} the set of complex numbers.
- 4. Marking Scheme
 - True or False. You will be awarded 2 marks for each correct answer -1 mark for each wrong answer.
 - Choose the correct answers. You will be awarded 2 marks for each correct answer -1 mark for each wrong answer.
 - In each part 0 mark for the questions not attempted.

1 True or False.

You need to just mark your answer as True or False.

- 1. Let a > 1 be a real number and $x_n := (1 + a^n)^{\frac{1}{n}}$. Then the sequence (x_n) converges.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and B be bounded subset of \mathbb{R} . Then f(B) is a bounded subset of \mathbb{R} .
- 3. There exists a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ such that

$$\ker(T) := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

and

Image
$$(T) := \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$

4. Every group of order 177 is cyclic.

- 5. Let R be a commutative ring with unity and let I be the set of all the non–units of R. Then I is a maximal ideal in R.
- 6. The polynomial $X^3 + 15X^2 + 36$ irreducible in $\mathbb{Q}[X]$.
- 7. There exists a non-constant analytic function $f: \mathbb{C} \to \{z = x + iy \in \mathbb{C} : y > 0\}$.
- 8. Let H be a real Hilbert space and $T: H \to H$ be a bounded linear map such that $\langle Tx, x \rangle = 0$ for all x in H. Then Tx = 0 for all $x \in H$.
- 9. The degree of the polynomial that interpolates a given function at n + 1 distinct points is exactly n.
- 10. Inverse Laplace trasform of $\pi/2 \tan^{-1}(s/2)$ is $\sin(2t)/t$.

2 Choose the correct answer(s).

There may be more than one correct answer. You need to choose the correct atnswers and mark them.

1. A quadrature rule on the interval [-1,1] uses the quadrature points $x_0 = -\alpha$ and $x_1 = \alpha$, where $0 < \alpha \le 1$:

$$\int_{-1}^{1} f(x)dx \approx \omega_0 f(-\alpha) + \omega_1 f(\alpha).$$

If this formula is exact for polynomials of as high a degree as possible, then which of the following options (is) are correct?

(A)
$$\omega_0^2 + \omega_1^2 = 1$$
 (B) $\omega_0^2 + \omega_1^2 = 2$ (C) $\alpha = 1/\sqrt{2}$ (D) $\alpha = 1/\sqrt{3}$.

2. If $y = x \sin(x) + x^2$ is a solution of the seventh order ordinary differential equation

$$a_7 y^{(7)} + a_6 y^{(6)} + a_5 y^{(5)} + a_4 y^{(4)} + a_3 y^{(3)} + a_2 y^{(2)} + a_1 y^{(1)} + a_0 y = 0,$$

where a_i , $i = 0, 1, \dots, 7$ are constants. Then which of the following statements (is) are true?

- (a) $a_7 + a_3 = a_5$.
- (b) $a_6 a_2 = a_3$.
- (c) $\sum_{i=0}^{7} a_i = 4$.
- (d) $\sum_{i=0}^{7} a_i = 3$.

(A)
$$a_7 + a_3 = a_5$$
 (B) $a_6 - a_2 = a_3$ (C) $\sum_{i=0}^7 a_i = 4$ (D) $\sum_{i=0}^7 a_i = 3$

3. Given that the differential equation

$$f(x,y)\frac{dy}{dx} + x^2 + y = 0$$

is exact and $f(0,y) = y^2$, then f(1,2) is

- (a) 5.
- (b) 4.
- (c) 6.
- (d) 0.
- (A)5 (B)4(C)6(D)0
- 4. Let $\Omega = \{(x,y): x^2 + (y-2)^2 < 4\}$ with its boundary $\partial\Omega$. Consider the boundary value problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{in } \Omega,$$

$$u = x^2 - y^2$$
 on $\partial \Omega$.

Then $\max\{u(x,y):(x,y)\in\Omega\cup\partial\Omega\}$ is

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (A) 0 (B) 1 (C) 2 (D) 3
- 5. Let $f:[0,1) \to \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ be the map defined by $f(t) = (\cos t, \sin t)$. Which of the following statement(s) is (are) true?
 - (a) The map f is a one-one continuous map not on-to.
 - (b) The map f is a one-one and on-to continuous map.
 - (c) The map f is one-one and on-to continuous map and it is a homeomorphism.
 - (d) The map f is one-one and on-to continuous map and it is not a homeomorphism.
- 6. Let $f:[0,4] \to [1,3]$ be a differentiable function such that $f'(x) \neq 1$ for all $x \in [0,4]$. Then the function f has
 - (a) at most one fixed point.

- (b) unique fixed point.
- (c) no fixed point.
- (d) more than one fixed point.
- 7. Which of the following statement(s) is (are) true?
 - (a) There exists a continuous one-one function from [a, b] to (a, b) for any two real numbers a < b.
 - (b) There exists a continuous on-to function from (a, b) to [a, b] for any two real numbers a < b.
 - (c) Every continuous function $f:[1,10] \to (2,8)$ has a fixed point.
 - (d) There exists a differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that f'(x) = [x] for x in \mathbb{R} .
- 8. We say two points (x_1, y_1) and (x_2, y_2) are equivalent iff $(x_2, y_2) = t(x_1, y_1)$ for some t > 0. If they are equivalent we denote by $(x_1, y_1) \sim (x_2, y_2)$. Let $Y := \frac{\mathbb{R}^2}{\sim} := \{[(x, y)] : (x, y) \in \mathbb{R}^2\}$ denote the quotient space under the quotient topology induced by the map $\pi : \mathbb{R}^2 \to Y$ defined by $\pi(x, y) := [(x, y)]$.

Which of the following statement(s) are true?

- (a) The space Y is T_1 but not T_2 .
- (b) The space Y is neither T_1 nor T_2 .
- (c) The space Y is compact.
- (d) The space Y is not compact.
- 9. Let $C([0,1]) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$ be the normed linear space with the norm $||f||_{\infty} := \sup\{|f(t)| : t \in [0,1]\}$ and Y be the vector subspace of C[0,1] defined by $Y := \{f \in C[0,1] : f \text{ is differentiable and } f' \text{ is continuous}\}$ with the norm $||f||_1 := \sup\{|f(t)| : t \in [0,1]\} + \sup\{|f'(t)| : t \in [0,1]\}$. Which of the following statements are true?
 - (a) The space $(Y, || ||_{\infty})$ is a Banach space.
 - (b) The space $(Y, || ||_1)$ is a Banach space.
 - (c) The map $T:(Y, || ||_1) \to (C[0,1], || ||_{\infty})$ defined by T(f) := f' is continuous.
 - (d) The map $I:(C[0,1],\|\,\|_{\infty})\to (Y,\|\,\|_1)$ defined by $I(f):=\int_0^x f(t)dt$ is continuous.
- 10. The number of connected component of $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$ is
 - (a) 1,
 - (b) 2,

- (c) countably infinite,
- (d) uncountable.