	Indian Institute of Technology Kanpur Department of Mathematics and Statistics WRITTEN TEST FOR PH.D. ADMISSIONS IN MATHEMATICS												
Maximum Marks : 90		Dai	9th 1	9th May, 2019			Time : 90 Minutes						
Name of the Candidate													
Roll Number			đ.	Category (Tick One)					OI /Eh	SC-NGL SC/ST/PwD			

INSTRUCTIONS

- (1) There are 3 sections. Each section has 10 questions, out of which, first 5 are 'Fill in the blank' type and the remaining 5 are 'MCQ' type.
- (2) For each 'Fill in the blank' question, 3 marks will be awarded for a correct answer, and 0 marks for all other cases.
- (3) For each 'MCQ', 3 marks will be awarded for fully correct answers, 1 mark for a partially correct answer with no wrong answer, and 0 marks for all other cases.
- (4) This question-cum-answer booklet must be returned to the invigilator before leaving the examination hall.
- (5) Please enter your answers only on this page in the space given below.

ANSWERS

ANST					
<u>Q.</u> NO.	SECTION A	<u>Q.</u> NO.	SECTION B	<u>Q.</u> <u>NO.</u>	SECTION C
1		1		1	
2		2		2	
3	•	3		<u>3</u>	
4		4		4	
<u>5</u>	100	<u>5</u>	- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>5</u>	
<u>6</u>	-	<u>6</u>		<u>6</u>	
7		7		7	
8		8		8	
9		9		9	
10		10		10	
-	2		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		2001

Notations

- I. We denote by \mathbb{N} , \mathbb{R} and \mathbb{C} , the set of natural numbers, real numbers and complex numbers, respectively.
- II. $M_n(\mathbb{R})$ denotes the set of all $n \times n$ real matrices. $GL_n(\mathbb{R})$ denotes the set of all invertible $n \times n$ real matrices.

Section A

- (1) Compute $\lim_{n\to\infty} (1+2^n+3^n)^{\frac{1}{n}}$. Ans. _____.
- (2) Identify the following subset of \mathbb{R} ,

$$\left\{\ell\in\mathbb{R}: \text{there is a sequence } \{a_n\}_{n=1}^{\infty} \text{ in } [-1,1]\cap\mathbb{Q} \text{ s.t. } \ell=\sum_{n=1}^{\infty}a_n\right\}.$$

Ans. ______.

(3) Compute the value of the following limit:

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_{1-\delta}^{1+\delta} \left(\int_0^x y e^{y^2} dy \right) dx.$$

Ans. _____

(4) Identify $M_2(\mathbb{R})$ with \mathbb{R}^4 by the map $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a,b,c,d)$ and let

$$SL_2(\mathbb{R}) := \{ g \in M_2(\mathbb{R}) : det(g) = 1 \}.$$

Let $\gamma : \mathbb{R} \longrightarrow SL_2(\mathbb{R})$ be a differentiable map with $\gamma(0) = I_2$ (where I_2 denotes the 2×2 identity matrix). Then the trace of $\gamma'(0)$ is _______.

- (5) Consider a $n \times n$ real symmetric matrix Q. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be defined as $f(x) = x^t Q x$, $\forall x \in \mathbb{R}^n$, where x is viewed as a column vector. Then the gradient $\nabla f(x) = \underline{\hspace{1cm}}$.
- (6) We say that a continuous function $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ has compact support if there exists a closed and bounded interval I such that φ vanishes identically outside I. Let $C_C^1(\mathbb{R})$ denote the set of all continuously differentiable functions from \mathbb{R} to \mathbb{R} with compact support. Then, which of the following statements is/are true:
 - (a) Any power series $\sum_{n=0}^{\infty} a_n x^n$, where all $a_n \in \mathbb{R}$, which converges everywhere on \mathbb{R} is in $C_C^1(\mathbb{R})$.
 - (b) The function $\Psi: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$\Psi(x) = \begin{cases} e^{\frac{1}{x^2 - 1}} & \text{for } x \in (-1, 1) \\ 0 & \text{elsewhere} \end{cases}$$

is in $C_C^1(\mathbb{R})$.

- (c) There exists a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which does not vanish identically on \mathbb{R} but $\int_{-\infty}^{\infty} f(x)g(x) dx = 0$, whenever $g \in C_C^1(\mathbb{R})$.
- (d) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuously differentiable then for all $g \in C^1_C(\mathbb{R})$, one has

$$\int_{-\infty}^{\infty} f(x)g'(x) dx = -\int_{-\infty}^{\infty} f'(x)g(x) dx.$$

- (7) Let $f_n:[0,1] \longrightarrow \mathbb{R}$ be a sequence of functions which converges uniformly to f on [0,1]. Which of the following statements is/are NOT true?
 - (a) $\forall n \in \mathbb{N}, f_n \text{ is bounded} \Longrightarrow f \text{ is bounded}.$
 - (b) $\forall n \in \mathbb{N}, f_n \text{ is continuous} \Longrightarrow f \text{ is continuous.}$
 - (c) $\forall n \in \mathbb{N}, f_n$ is differentiable $\Longrightarrow f$ is differentiable.
 - (d) $\forall n \in \mathbb{N}, f_n$ is integrable $\Longrightarrow f$ is integrable.
- (8) Let r > 0 and $f: (-r, r) \longrightarrow \mathbb{R}$ be an infinitely differentiable function. For each $n \in \mathbb{N}$, define the polynomial

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k.$$

Then, which of the following statements is/are true:

- (a) The sequence $\{P_n\}_{n=1}^{\infty}$ converges to f pointwise in some open interval containing 0.
- (b) If J an open interval containing 0 such that the sequence $\{P_n\}_{n=1}^{\infty}$ converges to f pointwise on J, then P_n converges to f uniformly on J.
- (c) For all $n \in \mathbb{N}$, the polynomial P_n satisfies

$$\lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} = 0.$$
 (Eq.1)

(d) For all $n \in \mathbb{N}$, P_n is the unique polynomial of degree $\leq n$ satisfying (Eq.1).

Notations and terminology for (9) and (10): A function $f = (f_1, f_2, f_3) : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ is said to be Lipschitz on a given $S \subseteq \mathbb{R}^2$ if there exists a K > 0 such that, $||f(x) - f(y)|| \le K||x - y||$ holds for all $x, y \in S$. We say f is of class C^1 , if all the partial derivatives of f are continuous everywhere.

Consider the set

$$\mathfrak{S} := \left\{ \mathbf{x} \in \mathbb{R}^2 : \text{ rank of } \left(\begin{array}{cc} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) \\ \frac{\partial f_3}{\partial x_1}(\mathbf{x}) & \frac{\partial f_3}{\partial x_2}(\mathbf{x}) \end{array} \right\} = 2 \right\}.$$

- (9) Let f be C^1 . With the above notations, pick the correct statement(s):
 - (a) The set S is always compact and connected.
 - (b) The set $\mathfrak S$ is always compact but not necessarily connected.
 - (c) The set S is never compact but always connected.
 - (d) None of the above.
- (10) Let f be C^1 . With notations as above, choose the correct statement(s):
 - (a) f is Lipschitz on every subset of \mathbb{R}^2 which is compact and convex.
 - (b) f is uniformly continuous on \mathbb{R}^2 .
 - (c) If $x \in \mathfrak{S}$, then f is one-one in some neighborhood of x.
 - (d) Neither (10b) nor (10c) is true.

Section B

- (1) Let A be the matrix $\begin{bmatrix} 3 & 2 & -14 & 1 \\ -2 & -1 & 15 & 1 \\ -6 & -4 & 28 & -2 \end{bmatrix}$. Then the dimension of the null space of A is
- (2) Consider the following system of equations:

$$x + ky = 1$$
$$kx + y = 1.$$

Then the system has no solution when $k = \underline{\hspace{1cm}}$

- (3) Let $A = \begin{bmatrix} \frac{1}{4} & \frac{5}{4} \\ \frac{3}{4} & -\frac{1}{4} \end{bmatrix}$. Then $A^{2019} = \underline{\qquad}$.
- (4) Let

$$A = \begin{bmatrix} 0 & 0 & a_1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & a_2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

If the matrix A satisfies the polynomial $x^3 + 1$, then $(a_1, a_2) = \underline{\qquad}$.

- (5) Let \mathbb{C}^{11} be the set of 11-tuples with entries in \mathbb{C} . Let $T:\mathbb{C}^{11}\to\mathbb{C}^{11}$ be a \mathbb{C} -linear transformation such that the dimension of the kernel of T=4, dimension of the kernel of $T^3=9$ and dimension of the kernel of $T^4=11$. Then the dimension of the kernel of T^2 is _______.
- (6) Let $A \in \mathbb{M}_n(\mathbb{R})$ and its minimal polynomial be $t^2 + t + 1$. Then, which of the following statements is/are true:
 - a. When n=3, the characteristic polynomial of A will be t^3-1 .
 - b. The value of n cannot be 5.
 - **c.** The inverse of -A is A + I.
 - **d.** There is a 1-dimensional subspace W of \mathbb{R}^n such that $\{Aw \mid w \in W\} \subset W$.
- (7) Let A be a $n \times n$ matrix with entries in \mathbb{C} . Let $\chi_A(x)$ denote its characteristic polynomial and $\mu_A(x)$ denote its minimal polynomial. Suppose $\chi_A(x) = (\mu_A(x))^2(x+(1+i))$ and $(\mu_A(x))^3 = \chi_A(x)(x-i)(x+1+i)$. Further, let the dimension of the eigen space of -1-i be 4. Then, which of the following statements is/are true:

a.
$$n = 7$$
 and A cannot be
$$\begin{bmatrix} -1-i & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1-i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1-i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1-i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1-i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i \end{bmatrix}.$$

$$\mathbf{b.} \ n = 7 \ \text{and} \ A \ \text{cannot} \ \mathbf{be} \ \begin{bmatrix} -1-i & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1-i & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1-i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1-i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \end{bmatrix}.$$

$$\mathbf{c.} \ n = 7 \ \text{and} \ A \ \mathbf{cannot} \ \mathbf{be} \ \begin{bmatrix} -1-i & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1-i & 0 & 0 & 0 & 0 \\ 0 & 0 & -1-i & 1 & 0 & 0 & 0 \\ 0 & 0 & -1-i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1-i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1-i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \end{bmatrix}.$$

- d. n is at least 7 and -i as well as -1+i are also eigenvalues of A.
- (8) Let V be the set of polynomials of degree at most 3 with real coefficients. For $S = \{f_i \in V : i = 1, 2, 3, 4\}$, which of the following statements is/are true:
 - a. If $\sum_{i=1}^{4} f_i(1) = 0$, then S is necessarily a linearly dependent set over \mathbb{R} .
 - b. If $\sum_{i=1}^{r} f_i(0) = 0$, then S is necessarily a linearly dependent set over \mathbb{R} .
 - c. If $f_i(1) = 0$ for each $i, 1 \le i \le 4$, then S is necessarily a linearly dependent set over \mathbb{R} .
 - d. If $f_i(0) = 1$ for each $i, 1 \le i \le 4$, then S is necessarily a linearly dependent set over \mathbb{R} .
- (9) Let A be a $n \times m$ matrix with real entries. Let $x_0 \in \mathbb{R}^n$ such that the system of equation $Ax = x_0$ has more than one solution. Then, which of the following statements is/are true:
 - a. Ax = b has a solution for every $b \in \mathbb{R}^n$.
 - b. If the system Ax = b has a solution for $b \in \mathbb{R}^n$, then it has infinitely many solutions.
 - c. The system Ax = 0 has a non-zero solution.
 - d. The rank of A is strictly less than n.
- (10) Let A be a $m \times n$ matrix of rank m with real entries. Then which of the following statements is/are true:
 - a. There exists a $B \in M_m(\mathbb{R})$ such that $BA = [I_m|\mathbf{0}_{n-m}]$.
 - **b.** There exists a $C \in M_n(\mathbb{R})$ such that $AC = [I_m|0_{n-m}]$.
 - c. There exists a $B \in GL_m(\mathbb{R})$ and $C \in GL_n(\mathbb{R})$ such that $BAC = [I_m|0_{n-m}]$.
 - d. There exist unique $B \in M_m(\mathbb{R})$ and $C \in M_n(\mathbb{R})$ such that $BAC = [I_m | \mathbf{0}_{n-m}]$.

Section C

(1) If the x-axis is tangent to the graph of a solution y(x) of the ordinary differential equation

$$y'' + \cos(x)y = 0$$

at the point (3,0), then y(2) is ______.

- (2) Let $y = \sin(x) + xe^x$ be a solution of the fourth order ordinary differential equation y'''' + ay''' + by'' + cy' + dy = 0, where a, b, c and d are real constants. Then the value of b a is equal to
- (3) Let y(t), for $t \ge 0$, be a continuous function which satisfies $y(t) + \int_0^t (t-\tau)y(\tau) d\tau = t^2$. Then, the value of $y\left(\frac{\pi}{2}\right)$ is _______.
- (4) A rain drop falls on the surface $z = y^2 x^2$ at the point (1, 2, 3). Assume that the path along which the rain drop goes down is given by the parametric curve

$$t \longmapsto \left(t, \ b(t), \ \frac{4}{t^2} - t^2\right).$$

Then b(t) is ______.

(5) Let f(x) be a continuously differentiable function on \mathbb{R} . If the ordinary differential equation

$$(3y^2 - x)f(x + y^2) dx + 2y(y^2 - 3x)f(x + y^2) dy = 0$$

is exact, then xf'(x) + 3f(x) is ______.

(6) Consider the following sequence of functions defined by the iterative formula,

$$y_n(t) = 1 + \int_0^t (s + y_{n-1}(s)) ds, \ n \ge 1, n \in \mathbb{N},$$

$$y_0(t) = 1, \quad t \in \mathbb{R}.$$

Then, which of the following statements is/are true:

- a. $\{y_n\}$ converges pointwise to the function $2e^t t 1$ in some neighbourhood of 0.
- b. $\{y_n\}$ does not have a pointwise limit in any neighbourhood of 0.
- c. $\{y_n\}$ converges uniformly to some function in some neighbourhood of 0.
- d. $\{y_n\}$ converges pointwise to the function $3e^t t 2$ on \mathbb{R} .
- (7) Consider the ordinary differential equation (ODE)

$$y'' - y = -1.$$

Let y(x) be the solution of this ODE which passes through the origin and remains bounded as $x \to \infty$. Then, which of the following statements is/are true:

a.
$$y(-1) = 1 - e$$
.

b.
$$y(-1) = 0$$
.

c.
$$\lim_{x \to 0} \frac{y(x)}{x} = 0$$
.

d.
$$\lim_{x \to 0} \frac{y(x)}{x} = 1$$
.

(8) Consider the initial value problem:

$$y'(t) = (y-1)^{\frac{1}{2}}, \quad y(0) = y_0.$$
 (A)

Then, which of the following statements is/are true:

- a. if $y_0 = 1$, (A) has a unique solution in some neighbourhood of t = 0.
- b. if $y_0 = 1$, (A) has more than one solution in some neighbourhood of t = 0.
- c. if $y_0 = 2$, (A) has a unique solution in some neighbourhood of t = 0.
- **d.** if $y_0 = 2$, (A) has more than one solution on the interval $(-1, \infty)$.
- (9) Consider the ordinary differential equation

$$y'' + p(x)y' + q(x)y = 0,$$

where p, q are continuous functions defined on (-1, 1). If $y_1(x) = \cos x$ and $y_2(x)$ are solutions of this ordinary differential equation, then which of the following can be chosen for $y_2(x)$?

- a. $1 + x^2$.
- **b.** *x*.
- c. $\sin(x^2)$.
- d. x^2 .
- (10) Consider the problem

$$y'(t) = y^{\frac{2}{3}}, \quad y(0) = 0.$$

Then the above problem has

- a. unique solution.
- b. infinitely many solutions.
- c. at most countably many solutions.
- d. exactly two solutions.