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INSTRUCTIONS

(1) There are 3 sections. Each section has 10 questions, out of which, first 5 are "Fill in the blank’ type and

the remaining 5 are 'MCQ’ type.

For each 'Fill in the blank’ question, 3 marks will be awarded for a correct answer, and 0 marks for all

other cases.

For each 'MICQ’, 3 marks will be awarded for fully correct answers, 1 mark for a partially correct answer

with no wrong answer, and 0 marks for all other cases.

This question-cum-answer booklet must be returned to the invigilator before leaving the examination hall.

Please enter your answers only on this page in the space given below.
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1 1 1
- 2 2
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Notations
I. We denote by N, R and C, the set of natural numbers, real numbers and complex numbers, respec-
tively.
II. M, (R) denotes the set of all n X n real matrices. GL,(R) denotes the set of all invertible n x n
real matrices.

Section A
(1) Compute lim (1 + 2" + 3")%. Ans.
n—oo

(2) Identify the following subset of R,

(e ]
{€ € R : there is a sequence {ap}or; in [-1,1]NQ s.t. £ = Z an} .
n=1

Ans.

(3) Compute the value of the following limit:
1 144 z 2
li Y dy | dz.
([ 0)

(4) Identify My(R) with R* by the map ( C;

Ans.

Z ) — (a,b,c,d) and let

SLy(R) :={g € Ms(R):det(g) =1}.

Let v : R — SLy(R) be a differentiable map with 'y(O) = I (where I3 denotes the 2 x 2 identity
matrix). Then the trace of 4/(0) is

(5) Consider a nxn real symmetric matrix Q. Let f : R® — R be defined as f(x) = x!Qx, Vx € R",
where x is viewed as a column vector. Then the gradient Vf(x) =

(6) We say that a continuous function ¢ : R — R has compact support if there exists a closed and
bounded interval I such that ¢ vanishes identically outside I. Let C}(R) denote the set of all
continuously differentiable functions from R to R with compact support. Then, which of the
following statements is/are true:

(a) Any power series ) o ;anz™, where all a, € R, which converges everywhere on R is in
CL(R).
(b) The function ¥ : R — R defined by

1
U(z) = e=?-1 forz € (-1, 1)
0 elsewhere
(c) There emsts a continuous function f : R — R which does not vamsh identically on R but
' J22, f(@)g(z) dz = 0, whenever g € CL(R). '

(d) If f R — R is continuously differentiable then for all g € CL(R), one has

/ f(@)g'(z)d / f(z)g(z) dx .



(7) Let fn: [0,1] — R be a sequence of functions which converges uniformly to f on [0,1]. Which
of the following statements is/are NOT true?
(a) Vn € N, f,, is bounded = f is bounded.
(b) Vn € N, f, is continuous = f is continuous.
(c) Vn € N, fp, is differentiable = f is differentiable.
(d) ¥n € N, f,, is integrable = f is integrable.

(8) Let r > 0 and f : (—r,r) — R be an infinitely differentiable function. For each n € N, define
the polynomial

L
Pulz) = 2 f—k]jlg-)l zk .
k=0 '

Then, which of the following statements is/are true:
(a) The sequence {P,}32, converges to f pointwise in some open interval containing 0.
(b) If J an open interval containing 0 such that the sequence {P,};2, converges to f pointwise
on J, then P, converges to f uniformly on J.
(c) For all n € N, the polynomial P, satisfies

lim f—("’);TP"(ml =0. (Eq.1)

(d) For all n € N, P, is the unique polynomial of degree < n satisfying (Eq.1).

Notations and terminology for (9) and (10): A function f = (f1, f2, f3) : RZ — R3 is said to be
Lipschitz on a given S C R? if there exists a K > 0 such that, ||f(x) — f(y)|| £ K||x — y|| holds for all
x,y € S. We say f is of class C?, if all the partial derivatives of f are continuous everywhere.

Consider the set

Dy D
g.’ltl %Z:g
G := { x € R?: rank of g—;(x) g—;(x) =2
3 3
a—wl(x) B )

(9) Let f be C'. With the above notations, pick the correct statement(s):
(a) The set G is always compact and connected.
(b) The set & is always compact but not necessarily connected.
(c) The set G is never compact but always connected.
(d) None of the above.

(10) Let f be C!. With notations as above, choose the correct statement(s):
(a) f is Lipschitz on every subset of R? which is compact and convex.
(b) f is uniformly continuous on R2,
(c) If x € G, then f is one-one in some neighborhood of x.
(d) Neither (10b) nor (10c) is true.



Section B

3 2 -14 1

(1) Let A be the matrix |—=2 —1 15 1 |. Then the dimension of the null space of A is
-6 —4 28 -2

(2) Consider the following system of equations:

z+ky =1
kx+y =1.

Then the system has no solution when k =

1 5
(3) Let A = [% 41] . Then A%01° =

4 1
(4) Let
0 0 ag O
1 0 O 0
A= 01 as 0
00 0 -1

If the matrix A satisfies the polynomial z° + 1, then (a1, a3) =

(5) Let C! be the set of 11—tuples with entries in C. Let T : C! — C!! be a C-linear transformation
such that the dimension of the kernel of T' = 4, dimension of the kernel of 7% = 9 and dimension
of the kernel of 7% = 11. Then the dimension of the kernel of T is

(6) Let A € M,(R) and its minimal polynomial be t24¢+1. Then, which of the following statements
is/are true:
a. When n = 3, the characteristic polynomial of A will be ¢3 — 1.
b. The value of n cannot be 5.
c. The inverse of —A is A+ I.
d. There is a 1-dimensional subspace W of R™ such that {Aw | we W} Cc W.

(7) Let A be a n x n matrix with entries in C. Let xa(z) denote its characteristic polynomial and
pa(z) denote its minimal polynomial. Suppose xa(z) = (pa(z))?(z + (1 +1)) and (pa(z))® =
xa(z)(z—1)(z+1+1). Further, let the dimension of the eigen space of —1 —i be 4. Then, which
of the following statements is/are true:

[—1—4 1 0 0
—1—1 0 0
=1 =g 9
I
0 —T—4
0 0
0 0

o o oo

a; 1= Tand A esrmot be

(el e i an M e Bl en R @n)
(el en I e Y e R e}
OO oo

O =2 OO0 OO
. OO0 0O OO




(8)

(9)

—1—3 1 0 0 0 00

0 —-1—1 1 0 0 00

0 0 —-1—1 1 0 00

b. n =7 and A cannot be 0 0 0 —1—1 0 00
0 0 0 0 -1—-72 0 O

0 0 0 0 0 i 0

| 0 0 0 0 0 0 7

—1—i 1 0 0 0 0 0]

0 —1-1 0 0 0 00

0 0 —-1—1 1 0 0 0

c. n= "7 and A cannot be 0 0 0 =] =1 0 00
0 0 0 0 -1—-7 0 O

0 0 0 0 0 i 0

0 0 0 0 0 0 1

d. nis at least 7 and —i as well as —1 + ¢ are also eigenvalues of A.

Let V be the set of polynomials of degree at most 3 with real coefficients. For S={fie V: i =
1,2,3,4}, which of the following statements is/are true:

4
a. If Z fi(1) =0, then S is necessarily a linearly dependent set over R.
i=1

4
b. If z fi(0) = 0, then S is necessarily a linearly dependent set over R.
i=1
c. If f;(1) =0 for each ¢, 1 <% < 4, then S is necessarily a linearly dependent set over R.
d. If f;(0) =1 for each %, 1 <14 < 4, then S is necessarily a linearly dependent set over R.

Let A be a n X m matrix with real entries. Let o € R™ such that the system of equation Az = zg
has more than one solution. Then, which of the following statements is/are true:

a. Az = b has a solution for every b € R™.

b. If the system Az = b has a solution for b € R™, then it has infinitely many solutions.
c. The system Az = 0 has a non-zero solution.

d. The rank of A is strictly less than n.

Let A be a m x n matrix of rank m with real entries. Then which of the following statements
is/are true:

a. There exists a B € M, (R) such that BA = [I;5|0n—m]-

b. There exists a C € My,(R) such that AC = [I;n|0n—m].

c. There exists a B € GLy,(R) and C € GL,(R) such that BAC = [I;z|0n—m)].
d. There exist unique B € Mp(R) and C € Myp(R) such that BAC = [I;3|0n—m)-



Section C

(1) If the z-axis is tangent to the graph of a solution y(z) of the ordinary differential equation
y" +cos(z)y =0
at the point (3,0), then y(2) is

(2) Let y = sin(z) + ze” be a solution of the fourth order ordinary differential equation y"" + ay™ +
by" 4+ ¢y’ + dy = 0, where a,b,c and d are real constants. Then the value of b — a is equal to

t
(3) Let y(¢), for t > 0, be a continuous function which satisfies y(t) + / (t — 7)y(7) dm = ¢2. Then,
0
™\ .
the value of y (5) is

(4) A rain drop falls on the surface z = y? — z? at the point (1,2,3). Assume that the path along
which the rain drop goes down is given by the parametric curve
4
t— (t, b(t), = —t2> .

t
Then b(t) is

(5) Let f(z) be a continuously differentiable function on R. If the ordinary differential equation

(3y” — ) f(z +y?) dz +2y(y* — 32) f(z + y*) dy = 0
is exact, then zf'(z) + 3f(z) is

(6) Consider the following sequence of functions defined by the iterative formula,
t
yn(t) =1 +/ (s +yn—-1(s))ds, n>1,n €N,
0

y()(t) =1, teR.
Then, which of the following statements is/are true:

a. {yn} converges pointwise to the function 2¢* — ¢ — 1 in some neighbourhood of 0.
b. {yn} does not have a pointwise limit in any neighbourhood of 0.

c. {yn} converges uniformly to some function in some neighbourhood of 0.

d. {yn} converges pointwise to the function 3¢ — ¢t — 2 on R.

(7) Consider the ordinary differential equation (ODE)

y”_y:_]--

Let y(z) be the solution of this ODE which passes through the origin and remains bounded as
z — 0. Then, which of the following statements is/are true:

a. y(-l)=1-e.
b. y(-1) =0.,

c. lim —+* =



(8) Consider the initial value problem:

(10)

Y®) =@y-137, yO0)=y. (4)

Then, which of the following statements is/are true:

a.
b.
c.
d.

if yo =1, (A) has a unique solution in some neighbourhood of ¢ = 0.

if yo =1, (A) has more than one solution in some neighbourhood of ¢ = 0.
if yo = 2, (A) has a unique solution in some neighbourhood of ¢ = 0.

if yo = 2, (A) has more than one solution on the interval (—1, 00).

Consider the ordinary differential equation

¥+ p(z)y’ + q(z)y =0,

where p, g are continuous functions defined on (—1,1). If y;(z) = cosz and y2(z) are solutions
of this ordinary differential equation, then which of the following can be chosen for ya(x)?

a.

b.

1+ 22,
z.

c. sin(z?).
d-

52,

Consider the problem

o TP

y' () =y3, y(0)=0.
Then the above problem has

unique solution.

infinitely many solutions.

at most countably many solutions.

exactly two solutions.
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