header-photo


Below is the detailed day-to-day & slot-wise program with Lecture Modules & Hands-On Coding Sessions for the IIT Kanpur Certificate Program on PYTHON for Artificial Intelligence Machine Learning and Deep Learning from 1st to 27th June 2025


1st June , 2025                                                     
12:00 PM - 12:30 PM Zoom Test Session
Week-1                                                     
2nd June, 2025                                                     
06:00 PM - 7:30 PM Lecture 1: Introduction to Artificial Intelligence (AI) Machine Learning (ML)
  •  •   Overview of AI, ML
  •  •   Regression
  •  •   Classification
  •  •   Supervised Learning
  •  •   Unsupervised Learning
  •  •   Deep Learning
  •  •   Test-Train Split
  •  •   Metrics
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Lecture 2: Linear Algebra for AIML
  •  •   Vector Representation
  •  •   Inner Product
  •  •   Orthogonality
  •  •   Matrices
  •  •   Matrix Inversion
3rd June, 2025                                                     
6:00 PM - 7:30 PM Lecture 3: Linear Regression for AIML
  •  •   Regression Model
  •  •   Multiple Regressors
  •  •   Model Computation
  •  •   Pseudo inverse
  •  •   Online Learning
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 1: IRIS Dataset Regression using PYTHON
  •  •   IRIS Dataset Features
  •  •   Linear Regression Module
  •  •   Mean Squared Error (MSE)
  •  •   R2 Score
4th June, 2025                                                     
                                                Break Day
5th June, 2025                                                     
06:00 PM - 07:30 PM Lecture 4: Logistic Regression-Based AIML
  •  •   Logistic Function
  •  •   Class Probabilities
  •  •   Likelihood and ML
  •  •   Logistic Regression Metrics
  •  •   Confusion Matrix
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 2: Boston Housing Price Analysis using PYTHON-Based Regression
  •  •   Boston Housing set Features
  •  •   Model Fitting
  •  •   Model Performance
  •  •   MSE, R2 Score
  •  •   Regression Plot
6th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 5: Support Vector Classifier (SVC) for Machine Learning
  •  •   SVM Structure
  •  •   Maximum Margin Classifier
  •  •   Convexity and Convex Optimization
  •  •   Kernel SVM
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 3: SCIKIT Package for Logistic Regression using Purchase/ Shopping Data
  •  •   Purchase/ Shopping Dataset Features
  •  •   Logistic Model Fitting
  •  •   Confusion Matrix Display
  •  •   Accuracy Score
Week-2                                                    
9th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 6: Naïve Bayes Technique for AIML
  •  •   Feature Vector
  •  •   Likelihood and Prior Probabilities
  •  •   Naïve Bayes Principle
  •  •   Posterior Probability Evaluation
  •  •   Gaussian Naïve Bayes
  •  •   Movie Recommender System Example
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 4: IRIS Data Set classification using PYTHON-Based SVC
  •  •   Dataset Features
  •  •   Accuracy Metrics
  •  •   Performance Evaluation
10th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 7: Discriminant Analysis (LDA) Based Data Classification
  •  •   Gaussian Density
  •  •   Multivariate Gaussian
  •  •   Gaussian/ Linear Discriminant
  •  •   Example Model Computation
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 5: Breast Cancer Dataset Analysis using SVC
  •  •   Breast Cancer Dataset Features
  •  •   SVM Fit
  •  •   Gaussian Kernel
  •  •   Polynomial Kernel
  •  •   Sigmoid Kernel
  •  •   Performance Assessment

Project 6: Naïve Bayes Classification of Purchase Dataset
  •  •   Purchase Dataset Features
  •  •   Gaussian NB Model Fitting
  •  •   Accuracy Metrics
  •  •   Confusion Matrix Display
11th June, 2025                                                     
                                                Break Day
12th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 8: Data Clustering for Machine Learning
  •  •   K-Means Algorithm
  •  •   Centroid Computation
  •  •   Cluster Assignment
  •  •   Elbow Method for Number of Clusters
  •  •   Silhouette Score
7:30 PM-8:00 PM Break
8:00 PM - 09:15 PM Project 7: Discriminant Based Data Classification using IRIS Data Set
  •  •   IRIS Dataset Features
  •  •   LDA Model Fitting
  •  •   Performance Visualization
13th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 9:Decision Tree Classifiers (DTC) for AIML
  •  •   Optimal Feature Selection
  •  •   Entropy
  •  •   Conditional Entropy
  •  •   Information Gain
  •  •   Computation for Practical Restaurant Reservation Example
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 8: PYTHON Project for Data Clustering
  •  •   K-Means Implementation
  •  •   Elbow Curve
  •  •   Silhouette Plot
  •  •   Cluster Visualization
Week-3                                                    
16th June, 2025                                                     
06:00 PM - 7:30 PM Lecture 10: Introduction to Neural Networks (NNs)
  •  •   Neuron Structure and Properties
  •  •   ANN Model
  •  •   Activation Functions
  •  •   One Hot Encoding
  •  •   Categorical Crossentropy
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 9: Building a DTC for IRIS Dataset using PYTHON
  •  •   IRIS Dataset Features
  •  •   DTC Model Fitting
  •  •   Accuracy Score
  •  •   Confusion Matrix
17th June, 2025                                                     
06:00 PM - 7:30 PM Leture 11: Deep Learning and Deep Neural Nets
  •  •   Multi-layer Neural Networks
  •  •   DNN Models
  •  •   Dense and Sequential Architectures
  •  •   NN Notation
  •  •   Multi-layer Neural Nets
  •  •   Gradient Descent
  •  •   Backpropagation
  •  •   Dropout Layers
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 10: Decision Tree Classifier using for Purchase Logistic Data Set
  •  •   Purchase Dataset Features
  •  •   DTC Visualization
  •  •   DTC Prediction
  •  •   Performance Metrics
18th June, 2025                                                     
                                                Break Day
19th June, 2025                                                     
06:00 PM - 7:30 PM Project 11: PYTHON-based Neural Network using PYTHON for Boston Housing Dataset
  •  •   Boston Dataset Features
  •  •   Sequential NN Model
  •  •   Model Fitting
  •  •   Training Epochs
  •  •   Accuracy Performance
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Lecture 12: Convolutional Neural Networks (CNNs)
  •  •   CNN Architectures
  •  •   Convolution
  •  •   Dot Product,
  •  •   Padding
  •  •   Hierarchical Structure
  •  •   Max/ Average Pooling
20th June, 2025                                                     
06:00 PM - 7:30 PM Project 12: Neural Network for analysis of Mobile Prices Dataset
  •  •   Dataset Features
  •  •   One Hot Encoding
  •  •   Data Scaling
  •  •   NN Model
  •  •   Crossentropy
  •  •   Adam Optimizer
  •  •   Plots of Loss and Accuracy
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Test prep 1:Test preparation 1
  •  •   Interview problem solving session
  •  •   Solution discussion
Week-4                                                    
23rd June, 2025                                                     
06:00 PM - 7:30 PM Distinguished Guest Lecture I:
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 13: Deep Learning for Fashion Classification using the MNIST Fashion Data Set
  •  •   Fashion MNIST (Modified National Institute of Standards and Technology)
         Dataset Description
  •  •   MNIST Dataset Features and Classes
  •  •   CNN Modeling
  •  •   CNN Training
  •  •   Sparse Categorical Crossentropy
  •  •   Loss/ Accuracy Plotting

Project 14: Deep Learning for Digit Classification using MNIST Digit DataSet
  •  •   MNIST Handwritten Digit Dataset Features
  •  •   CNN Architecture
  •  •   Data Encoding
  •  •   Softmax Activation
  •  •   Confusion Matrix
  •  •   Plots of Loss and Accuracy
24th June, 2025                                                     
                                                Break Day
25th June, 2025                                                     
                                                Break Day
26th June, 2025                                                     
06:00 PM - 7:30 PM Project 15: Deep Learning using the CIFAR Dataset
  •  •   CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes)
  •  •   Dataset Visualization
  •  •   CNN Architecture
  •  •   Model Building and Compilation
  •  •   Classification Accuracy
  •  •   Confusion Matrix Metrics
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Test prep 2: Test preparation 2
  •  •   Interview problem solving session
  •  •   Solution discussion
27th June, 2025                                                     
06:00 PM - 07:30 PM Distinguished Guest Lecture II:
7:30 PM-8:00 PM Break
8:00 PM - 9:15 PM Project 16: IMDB Dataset and Deep Learning for Movie Rating Classification
  •  •   Internet Movie Database (IMDb) Dataset Description
  •  •   Vectorization
  •  •   Binary Crossentropy
  •  •   Model Training
  •  •   Training and Validation Accuracy Plots
  •  •   Training and Validation Loss Plots