G Protein-Coupled Receptors (GPCRs) are the main conduit of information transfer across the cell membrane. These receptors and their signaling networks are intricately involved in almost every physiological and pathophysiological processin human body such as cardiovascular regulation, immune response, neurotransmission, behavior and mood regulation. About half of the currently prescribed drugs target this class of receptorsincluding alpha and beta blockers, angiotensin receptor blockers and anti-histamines. GPCR targeting drugs are used in congestive heart failure, hypertension, asthma, allergies, schizophrenia, Parkinson's disease and cancer.
Our goal is to understand the structural basis of activation and signaling of selected non-canonical GPCRs and ultimately, leverage this information toimprove therapeutic manipulation in human diseases. We utilize synthetic chaperones generated through combinatorial biology and directed evolution approaches to capture and visualize distinct conformational states of GPCRs and their signaling complexes. Our research projects involve a multifunctional approach including cellular signaling, protein biochemistry, receptor pharmacology and structural biology.