Mechanical Engineering

Indian Institute of Technology Kanpur

Slide background
Slide background

Undergraduate Term Projects

Slide background

Dropwise condensation on textured surfaces and multi-scale modeling

Dropwise condensation is a heterogeneous
phase-change process in which vapor
condenses in the form of discrete
liquid drops

Slide background

Droplet Hydrodynamics during Lysozyme Protein Crystallization

A team of researchers at IIT Kanpur
has studied experimentally the fluid
flow pattern inside the droplet

Slide background

Energy optimal walk of an 8 DOF compliant biped robot

A team of researchers at IIT Kanpur
have designed and experimentally evaluated
a new 8-DOF biped robot

We conduct fundamental and applied research in broad areas of Mechanical Engineering

We offer innovative solutions that are also technically sound.

Information related to recent news, department events

Information related to headlines, events, announcements

Welcome Message

Welcome to the Department of Mechanical Engineering at IIT Kanpur. We started our journey in the year of 1960. Over the last six decades, we have grown our expertise and competence in the core Mechanical Engineering curriculum and research.... - Read More

-Prof. Ashish Dutta
Head, Department of Mechanical Engineering

Featured Faculty

Ashish Dutta
Ashish Dutta
Professor
Arun K. Saha
Arun K. Saha
Professor
Pankaj Wahi
Pankaj Wahi
Professor
Nachiketa Tiwari
Nachiketa Tiwari
Professor
Niraj Sinha
Niraj Sinha
Professor
Shyam Sunder Gopalakrishnan
Shyam Sunder Gopalakrishnan
Assistant Professor
Anikesh Pal
Anikesh Pal
Assistant Professor
J. Ramkumar
J. Ramkumar
Professor
Sumit Basu
Sumit Basu
Professor
Arvind Kumar
Arvind Kumar
Professor
Malay K. Das
Malay K. Das
Professor
Jishnu Bhattacharya
Jishnu Bhattacharya
Associate Professor
Anindya Chatterjee
Anindya Chatterjee
Professor
Umesh Madanan
Umesh Madanan
Assistant Professor
Anurag Gupta
Anurag Gupta
Professor
Anupam Saxena
Anupam Saxena
Professor
Bishakh Bhattacharya
Bishakh Bhattacharya
Professor
Shantanu Bhattacharya
Shantanu Bhattacharya
Professor

Syllabus: Introduction. One-dimensional and Two-dimensional Steady and Transient Conduction. Forced Convection over a flat plate and inside tubes. Natural Convection over a vertical flat plate. Mass Transfer. Boiling and Condensation. Heat Exchangers. Thermal Radiation. Heat Transfer Applications.

Credits:10

Credits:6

Syllabus:The primary objective of the course is to teach fundamentals of computational method for solving non-linear partial differential equations (PDE) primarily in complex geometry. The emphasis of the course is to teach CFD techniques for solving incompressible and compressible N-S equation in primitive variables, grid generation in complex geometry, transformation of N-S equation in curvilinear coordinate system and introduction to turbulence modelling.

Credits:9

Syllabus: Introduction to Cartesian tensors; Strains: Concept of strain, derivation of small strain tensor and compatibility; Stress: Derivation of Cauchy relations and, equilibrium and symmetry equations, principal stresses and directions; Constitutive equations: Generalized Hooke’s law including thermoelasticity, Material symmetry; Boundary Value Problems: Definition of the bvp in linear elasticity including concepts of uniqueness and superposition; 2-d plane stress and plane strain problems, introduction to governing equations in cylindrical and spherical coordinates, axisymmetric problems (examples may include problems on curved beams, thermoelasticity, torsion of non-circular cross sections, contact problems in 2-d, problems on wedges and crack tip fields); 3-d problems by potential methods; Energy methods and problems.

Credits:7

Prerequisites:ESO 204

Syllabus:Equations of motion in rotating coordinate frames, Cartesian approximations, Density stratified flows and internal gravity waves, Taylor-Proudman theorem, Ekman layer, single and multiple layered shallow-water systems, Geostrophic adjustment and Thermal-wind balance, Potential vorticity, Poincare, Kelvin and Rossby waves, Kelvin-Helmholtz instability, Baroclinic instability, Wave-mean theory, 2D turbulence, chaotic advection in Stratosphere, Laplace tidal equations, Internaltides in deep oceans, tsunami waves .

Credits:9

Syllabus:Introduction: Governing equations for fluid flow and heat transfer, classifications of PDE, finite difference formulation, various aspects of finite difference equation, error and stability analysis, dissipation and dispersion errors, modified equations; Solutions of simultaneous equations: iterative and direct methods, TDMA, ADI; Elliptic PDE: One- and Twodimensional steady heat conduction and their solutions, extension to three-dimensional; Parabolic PDE:...

Credits:9

Highlights

 

ME Fast Facts

42
Faculty
474
B.Tech Students
35
Dual degree students (B.Tech-M.Tech)
254
M.Tech. Students
48
M.S. by research Students
200
PhD Students